欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 48-57.doi: 10.3724/SP.J.1006.2011.00048

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆杂种产量相关的位点及等位变异分析

杨加银1,2,贺建波1,**,王金社1,管荣展1,盖钧镒1,*   

  1. 1 南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095; 2 江苏徐淮地区淮阴农业科学研究所 / 江苏省环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223001
  • 收稿日期:2010-04-14 修回日期:2010-07-29 出版日期:2011-01-12 网络出版日期:2010-11-16
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn, Tel: 025-84395405
  • 基金资助:

    本研究由国家重点基础研究发展规划(973计划)项目(2006CB101708, 2009CB118404, 2010CB125906), 国家高技术研究发展计划(863计划)项(2006AA100104, 2009AA101106), 国家自然科学基金项目(30671266), 国家科技支撑计划项目(2006BAD13B05-7)和高等学校创新引智计划项目(B08025)资助。

Analysis of Loci and Alleles Associated with Hybrid Yield in Soybean

YANG Jia-Yin1,2,HE Jian-Bo1,**,WANG Jin-She1,GUAN Rong-Zhan1,GAI Jun-Yi1,*   

  1. 1 Soybean Research Institute, Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; 2 Huaiyin Institute of Agricultural Sciences of Xuhuai Region / Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223001, China
  • Received:2010-04-14 Revised:2010-07-29 Published:2011-01-12 Published online:2010-11-16
  • Contact: GAI Jun-Yi,E-mail:sri@njau.edu.cn,Tel:025-84395405

摘要: 选用来源于中国黄淮和美国的熟期组II~IV的8个大豆品种, 按Griffing方法II设计, 配成28个双列杂交组合, 包括8个亲本共计36份材料。选用300个SSR标记, 对8个大豆亲本进行全基因组扫描, 利用基于回归的单标记分析法, 对大豆杂种产量和分子标记进行相关性分析, 估计等位变异的效应和位点的基因型值, 剖析杂种组合的等位变异。结果表明, 300个SSR标记中有38个与杂种产量显著相关, 分布于17个连锁群上, 其中D1a和M等连锁群上较多, 有8个位于连锁定位的QTL区段内(±5 cM)。单个位点可分别解释杂种产量表型变异的11.95%~30.20%。杂种的位点构成中包括有增效显性杂合位点、增效加性纯合位点、减效加性纯合位点和减效显性杂合位点4部分, 其相对重要性依次递减。从38个显著相关的SSR标记位点中, 遴选出Satt449、Satt233和Satt631等9个优异标记基因位点, Satt449~A311、Satt233~A217和Satt631~A152等9个优异等位变异, 以及Satt449~A291/311、Satt233~A202/207和Satt631~A152/180等9个优异杂合基因型位点。这些结果为理解杂种优势的遗传构成和大豆杂种产量聚合育种提供了依据。

关键词: 大豆, 双列杂交, 杂种优势, 单标记分析, 杂合位点, 纯合位点

Abstract: Single marker regression analysis is a effective way to detect differences among genotypes associated with marker alleles in quantitative traits. Eight soybean parental materials, seven from Huang-Huai region in China and one from US with maturity group II–IV, were used to develop a set of diallel crosses according to Griffing’s Method II, including the eight parents and their twenty-eight crosses. The molecular data of 300 SSR markers on eight parental materials were obtained and analyzed for association between SSR markers and hybrid yield using the single marker regression analysis. The hybrid crosses were dissected into their allele constitution and the effects of alleles and genotypic values of single locus were estimated. The results showed that 38 SSR loci located on 17 linkage groups were identified to associate with hybrid yield in the diallel crosses with more loci on linkage groups D1a, M, etc., and eight of the 38 loci were located within a region of ±5 cM apart from a known QTL identified from family-based linkage (FBL) mapping in the literature. Each of the loci explained 11.95%–30.20% of the phenotypic variance of hybrid yield. The allele pairs of the hybrids were composed of four parts, i.e. positive dominant heterozygous loci, positive additive homozygous loci, negative additive homozygous loci and dominant heterozygous loci, with their relative importance in a descending order. Among the 38 loci associated with hybrid yield, nine elite loci such as Satt449, Satt233 and Satt631 and nine elite alleles such as Satt449–A311, Satt233–A217 and Satt631–A152 were identified. Meanwhile, nine heterozygous allele pairs such as Satt449–A291/311, Satt233–A202/207 and Satt631–A152/180 were detected. These results will provide some relevant information for understanding the genetic basis of heterosis and lay a foundation for hybrid soybean breeding by design.

Key words: Soybean, Diallel cross, Heterosis, Single marker analysis, Heterozygous loci, Homozygous loci

[1]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y T, Li X H, Zhang Q F, Saghai-Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231
[2]Lee M, Godshalk E B, Lamkey K R, Woodman W W. Association of restriction fragment length ploymorphisrns among maize inbreds with agronomic performance of their crosses. Crop Sci, 1989, 29: 1067–1071
[3]Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S R. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis and RFLPs. Theor Appl Genet, 1990, 80: 833–840
[4]Yuan L-X(袁力行), Fu J-H(傅骏骅), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Zhang S-H(张世煌), Li X-H(李新海), Li L-C(李连成). Study on prediction of heterosis in Maize (Zea mays L.) using the molecular markers. Sci Agric Sin (中国农业科学), 2000, 33(6): 6–12 (in Chinese with English abstract)
[5]Cerna F J, Cianzio S R, Rafalski A, Tingey S, Dyer D. Relationship between seed yield heterosis and molecular heterozygosity in soybean. Theor Appl Genet, 1997, 95: 460–467
[6]Bohn M, Utz H F, Melchinger A E. Genetic similarities among winter wheat cultivars determined on the base of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci, 1999, 39: 228–237
[7]Zhang Q F, Gao Y J, Yang S H, Saghai-Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Mol Breed, 1995, 1: 133–142
[8]Wu Y-T(武耀廷), Zhang T-Z(张天真), Zhu X-F(朱协飞), Wang G-M(王广明). Relationship between F1, F2 yield, heterosis and genetic distance measured by molecular markers and parent performance in cotton. Sci Agric Sin (中国农业科学), 2002, 35(1): 22–28 (in Chinese with English abstract)
[9]Zhang Q, Zhou Z Q, Yang G P, Xu C G, Liu K D, Saghai-Maroof M A. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet, 1996, 93: 1218–1224
[10]He G-H(何光华), Hou L(侯磊), Li D-M(李德谋), Luo X-Y(罗小英), Liu G-Q(刘国清), Tang M(唐梅), Pei Y(裴炎). Prediction of yield and yield components in hybrid rice by using molecular markers. Acta Genet Sin (遗传学报), 2002, 29 (5): 438–444 (in Chinese with English abstract)
[11]Liu X C, Koshun I, Wang W X. Identification of AFLP markers favorable to heterosis in hybrid rice. Breed Sci, 2002, 52: 201–206
[12]Cho Y I, Park C W, Kwon S W, Chin J H, Ji H S, Park K J, McCouch S, Koh H J. Key DNA markers for predicting heterosis in F1 hybrids of japonica rice. Breed Sci, 2004, 54: 389–397
[13]Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris). Theor Appl Genet, 2002, 105: 1050–1057
[14]Xu X-F(徐新福), Tang Z-L(唐章林), Li J-N(李加纳), Chai Y-R(柴友荣), Wang R(王瑞), Chen L(谌利). Prediction model of hybrid performance using molecular marker based on additive-dominant effects. Sci Agric Sin (中国农业科学), 2008, 41(10): 2963–2972 (in Chinese with English abstract)
[15]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred using molecular markers. Genetics, 1992, 132: 823–839
[16]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754
[17]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q f. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579
[18]Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, 47: 35–39
[19]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15
[20]Yang J-Y(杨加银), Gai J-Y(盖钧镒). Heterosis, combining ability and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys. Acta Agron Sin (作物学报), 2009, 35(4): 620–630 (in Chinese with English abstract)
[21]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336
[22]Orf J H, Chase K, Adler F R, Mansur L M, Lark K G. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci, 1999, 39: 1652–1657
[23]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[24]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791
[25]Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467
[26]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526–1535 (in Chinese with English abstract)
[27]Yang J-Y(杨加银), Gai J-Y(盖钧镒). Studies on hybrid heterosis and parental combining ability of yield and quality traits in early generations of soybean. Sci Agric Sin (中国农业科学), 2009, 42(7): 2280–2290 (in Chinese with English abstract)
[28]Orf J H, Diers B W, Boerna H R. Genetic Improvement: Conventional and Molecular Based Strategies. In: Boerna H R, Specht J E, eds. Soybean: Improvement, Production and Uses. 3rd edn. Agronomy Monograph. Vo1.16. ASA and CSSA, Madison, WI, USA. 2004. pp 417–450
[29]Pathan M S, Sleper D A. Advances in Soybean Breeding. In: Stacey G ed. Genetics and Genomics of Soybean. Springer Science + Business Media, LLC. 2008. pp 117–122
[30]Yang J-Y(杨加银), He J-B(贺建波), Guan R-Z(管荣展), Yang S-P(杨守萍), Gai J-Y(盖钧镒). Genetic analysis in terms of major-minor locus group constitutions of yield in hybrid soybean. Acta Agron Sin (作物学报), 2010, 36(9): 1468–1475 (in Chinese with English abstract)
[31]Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Inheritance of elite alleles of yield and quality traits in the pedigrees of major cultivar families released in Huanghuai Valleys and Southern China. Acta Agron Sin (作物学报), 2009, 35(2): 191–202 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!