作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1785-1793.doi: 10.3724/SP.J.1006.2011.01785
陈洪梅1,2,汪燕芬2,姚文华2,罗黎明2,李佳莉3,徐春霞2,番兴明2,*,郭华春1,*
CHEN Hong-Mei1,2,WANG Yan-Fen2,YAO Wen-Hua2,LUO Li-Ming2,LI Jia-Li3,XU Chun-Xia2,FAN Xing-Ming2,*,GUO Hua-Chun1,*
摘要: 用5个热带及亚热带玉米自交系和5个导入热带种质并经连续回交改良的温带玉米自交系, 采用Griffing双列杂交方法III杂交, 共配制90个杂交组合。2008年、2009年以大面积推广杂交种云瑞6号为对照, 对供试自交系进行配合力、杂种优势及利用潜力研究。结果表明, 导入热带种质并经连续回交改良的温带玉米自交系YML598、YML58的多数性状一般配合力效应为极显著正值, 在杂交育种中具有较大的利用潜力;单株产量配合力效应值与诸多产量影响因素的配合力效应值密切相关, 雌雄间隔期、秃尖与单株产量呈负相关, 而其他性状与单株产量呈正相关;产量对照优势H≥10%的组合大多为热带、亚热带种质×改良温带种质, 单株产量特殊配合力效应为极显著正值的组合均为热带、亚热带种质×改良温带种质, 说明热带、亚热带玉米种质与经热带种质改良后的温带玉米种质之间仍具有较强的杂种优势, 且导入热带种质的温带系与热带、亚热带供体系的杂种优势仍然存在, 其所属的杂种优势群并未改变。以热带、亚热带玉米种质为供体, 采用连续回交的方法改良温带玉米自交系是利用热带、亚热带玉米种质的有效方法。
[1]Holland J B, Goodman M M. Combining ability of tropical maize accessions with US germplasm. Crop Sci, 1995, 35: 767–773 [2]Godshalk E B, Kauffmann K D. Performance of exotic × temperate single-cross maize hybrids. Crop Sci, 1995, 35: 1042–1045 [3]Beck D L, Vasal S K, Crossa J. Heterosis and combining ability among subtropical and temperate intermediate-maturity maize germplasm. Crop Sci, 1991, 31: 68–73 [4]Chen Y-H(陈彦惠), Wang L-M(王利明), Dai J-R(戴景瑞). Studies on the heterotic patterns between tropical subtropical and Chinese temperate germplasm in maize. Acta Agron Sin (作物学报), 2000, 26(5): 557–564 (in Chinese with English abstract) [5]Fan X-M(番兴明), Yang J-Y(杨峻芸), Chen H-M(陈洪梅), Tan J(谭静). Utilization of Tropical, Subtropical Maize Germplasm (热带亚热带玉米种质的利用). Kunming: Yunnan Science and Technology Publishing House, 2003 (in Chinese) [6]Hallauer A R. Recurrent selection in maize. Plant Breed Rev, 1992, 9: 115–119 [7]Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding, 2nd edn. Ames, IA: Iowa State University Press,1988 [8]Pandey S, Gardner C O. Recurrent selection for population variety, and hybrid improvement in tropical maize. Adv Agron, 1992, 48: 1–87 [9]Meredith W R Jr. Backcross breeding to increase fiber strength of cotton. Crop Sci, 1977, 17: 172–175 [10]Duvick D N. Continuous backcrossing to transfer prolificacy to a single-eared inbred line of maize. Crop Sci, 1974, 14: 69–71 [11]Chen H M, Zhang Y D, Chen W, Kang M S, Tan J, Wang Y F, Yang J Y, Fan X M. Improving grain yield and yield components via backcross procedure. Maydica, 2010, 55: 145–153 [12]Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci, 1956, 9: 463–493 [13]Griffing B. A generalized treatment of the use of diallel crosses in quantitative inheritance. Heredity, 1956, 10: 31–50 [14]Zhang Y D, Kang M S, Magari R. A diallel analysis of ear moisture loss rate in maize. Crop Sci, 1996, 36: 1140–1144 [15]Glover M A, Willmot D B, Darrah L L, Hibbard B E, Zhu X Y. Diallel analyses of agronomic traits using Chinese and U.S. maize germplasm. Crop Sci, 2005, 45: 1096–1102 [16]Kenga R, Thé C, Zonkeng C. Combining ability in medium-maturity maize germplasm adapted to tropical mid-altitude and lowland environment. J Agric Environ Int Dev, 2008, 102: 319–332 [17]Jumbo M B, Carena M J. Combining ability, maternal, and reciprocal effects of elite early-maturing maize population hybrids. Euphytica, 2008, 162: 325–333 [18]Max A G, David B W, Larry L D, Bruce E H, Zhu X Y. Diallel analyses of agronomic traits using Chinese and U.S. maize germplasm. Crop Sci, 2005, 45: 1096–1102 [19]Long J K, Banziger M, Smith M E. Diallel analysis of grain iron and zinc density in Southern African-adapted maize inbreds. Crop Sci, 2004, 44: 2019–2026 [20]Li X-H(李新海), Xu S-Z(徐尚忠), Li J-S(李建生). Combining ability of ten tropical and subtropical maize populations. J Maize Sci (玉米科学), 2001, 9(1): 1–5 (in Chinese with English abstract) [21]Chen Y-H(陈彦惠), Wu A-Z(武安柱), Wu L-C(吴连成), Zhang X-Q(张向前), Wu J-Y(吴建宇), Bai J-W(白锦雯). Analysis of combining ability and heterosis among 8 maize populations including “Gold queen”. J Maize Sci (玉米科学), 2002, 10(4): 10–12 (in Chinese with English abstract) [22]Pan G-T(潘光堂), Xia Y-L(夏燕莉), Liu Y-Z(刘玉贞), Rong T-Z(荣廷昭). Genetic variability analysis of embryogenic callus inductivity from immature embryo culture in maize. Acta Agron Sin (作物学报), 2003, 29(3): 386–390 (in Chinese with English abstract) [23]He J-B(贺建波), Guan R-Z(管荣展), Gai J-Y(盖钧镒). A genetic analysis method of major-minor locus groups in diallel cross design. Acta Agron Sin (作物学报), 2010, 36(8): 1248–1257 (in Chinese with English abstract) [24]Fan X-M(番兴明), Chen H-M(陈洪梅), Tan J(谭静), Yang J-Y(杨峻芸), Huang Y-X(黄云霄), Duan Z-L(段智利). Combining ability of elite protein maize inbreds for main agronomic characters. Acta Agron Sin (作物学报), 2005, 31(5): 540–544 (in Chinese with English abstract) [25]Fan X-M(番兴明), Tan J(谭静), Huang B-H(黄必华), Liu F(刘峰). Analyses of combining ability and heterotic patterns of quality protein maize inbreeds. Acta Agron Sin (作物学报), 2001, 27(6): 986–992 (in Chinese with English abstract) [26]Fan X-M(番兴明), Chen H-M(陈洪梅), Tan J(谭静), Liu F(刘峰), Han X-R(韩学瑞), Huang Y-X(黄云霄), Duan Z-L(段智利). Analysis of yield combining ability of subtropical tropical quality protein maize inbred line and temperate normal maize inbred line. J Maize Sci (玉米科学), 2006, 14(1): 12–15 (in Chinese with English abstract) [27]Tong S-H(佟圣辉), Chen G(陈刚), Wang Z-Y(王作英), Wang X-J(王孝杰). The review and enlightenment on the success of maize inbred line Dan 598 breeding. J Maize Sci (玉米科学), 2009, 17(2): 47–48 (in Chinese with English abstract) [28]Du C-X(堵纯信), Cao C-J(曹春景), Cao Q(曹青), Bi M-M(毕蒙蒙), Dong Z-K(董战鲲), Zhang F-L(张发林). The breeding and application of maize hybrid Zhengdan 958. J Maize Sci (玉米科学), 2006, 14(6): 43–45 (in Chinese with English abstract) [29]Li F-M(李发民), Mao J-C(毛建昌), Li X-T(李向拓). The breeding of maize inbred line K22 and the analysis on the combine ability. J Gansu Agric Univ (甘肃农业大学学报), 2004, 39(3): 312–315 (in Chinese with English abstract) [30]Zhang R-H(张仁和), Shi G-X(师公贤). Characters and application of inbreed line K12 with high yield, quality and multi-resistance. Mod Seed Ind (现代种业), 2003, (4): 11 (in Chinese) [31]SAS institute. SAS User’s Guide: Statistics. SAS Institute, Cary, NC, 2005 [32]Zhang Y D, Kang M S, Lamkey K R. DIALLEL-SAS05: a comprehensive program for griffing’s and gardner-eberhart analyses. Agron J, 2005, 97: 1097-1106 [33]Fan X M, Chen H M, Tan J, Xu C X, Zhang Y D, Luo L M, Huang Y X, Kang M S. Combining abilities for yield and yield components in maize. Maydica, 2008, 53: 39–46 [34]Lewis R S, Goodman M M. Incorporation of tropical maize germplasm into inbred lines derived from temperate ? temperate-adapted tropical line crosses: agronomic and molecular assessment. Theor Appl Genet, 2003, 107: 798–805 [35]HalIauer A R. Potential of exotic germplasm for maize improvement. In: Walden D B ed. Maize Breeding and Genetics. New York: John Wiley & Sons, 1978. pp 229–247 [36]Albrecht B, Dudley J W. Evaluation of 4 maize population containing different proportions of exotic germplasm. Crop Sci, 1987, 27: 480–486 [37]Chen Y-H(陈彦惠), Zhang X-Q(张向前), Chang S-H(常胜合), Wu L-C(吴连成), Wu J-Y(吴建宇), Xi Z-Y(席章营). Studies on the heredity of the traits related to the photoperiod-sensitive phenomenon among the temperature × tropical crosses in maize. Sci Agric Sin (中国农业科学), 2003, 36(3): 248–253 (in Chinese with English abstract) [38]Dudley J W. Theory for transfer of alleles. Crop Sci, 1982, 22: 631–637 [39]Selig L, Lambert R J, Rocheford T R, Silva W J. RFLP and cluster analysis of introgression of exotic germplasm into U.S. maize inbreds. Maydica, 1999, 44: 85–92 [40]Qiao S-B(乔善宝), Wang Y-H(王玉花), Yang K-C(杨克诚), Rong T-Z(荣廷昭), Pan G-T(潘光堂), Gao S-B(高世斌). Effects contributed by different donor parents and backcross times on R08 improvement. Acta Agron Sin (作物学报), 2009, 35(12): 2187–2196 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|