欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1819-1827.doi: 10.3724/SP.J.1006.2011.01819

• 耕作栽培·生理生化 • 上一篇    下一篇

不同基因型玉米对乙烯利调控反应敏感性的差异

卫晓轶,张明才,李召虎,段留生*   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院农学系,北京 100193
  • 收稿日期:2011-03-28 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 段留生, E-mail: duanlsh@cau.edu.cn, Tel: 010-62731301
  • 基金资助:

    本研究由中央高校基本科研业务费专项资金项目和国家科技支撑计划项目(2006BAD02A15)资助。

Differences in Responding Sensitivity to Ethephon among Different Maize Genotypes

WEI Xiao-Yi,ZHANG Ming-Cai,LI Zhao-Hu,DUAN Liu-Sheng*   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2011-03-28 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 段留生, E-mail: duanlsh@cau.edu.cn, Tel: 010-62731301

摘要: 倒伏是玉米高产栽培中导致产量严重下降的关键性限制因素之一,应用植物生长调节剂乙烯利或复配剂改善玉米茎秆质量、提高抗倒能力,是解决玉米倒伏的有效途径。本研究以玉米杂交种农大108、鲁单981及其相应亲本许178、黄C、齐319和lx9801为材料,在拔节期叶面喷施200 mg L-1乙烯利药液,研究了乙烯利对不同基因型玉米株型及其生理生化特征的影响。结果表明,乙烯利处理显著降低了农大108、鲁单981的株高和穗位高,特别是显著抑制了基部第1至6节间伸长;乙烯利处理显著提高了基部伸长节间中的苯丙氨酸解氨酶(PAL)和吲哚乙酸氧化酶(IAAO)活性,降低了基部伸长节间中生长素(IAA)和赤霉素(GA4)含量,增加了脱落酸(ABA)的积累。乙烯利处理显著降低了亲本许178、黄C、齐319和lx9801的株高和穗位高,显著缩短了基部节间长度;乙烯利处理后显著提高了基部伸长节间PAL和IAAO活性,显著降低了节间IAA和GA4含量,提高了脱落酸含量,降低了GA4/ABA比值。结合植株性状和生理生化特征分析,杂交种对乙烯利调控反应敏感性差异是由其双亲对乙烯利反应差异造成的,表现在乙烯利处理父母本间株高、穗位高、PAL和IAAO活性以及内源激素含量变化上存在显著差异。

关键词: 乙烯利, 玉米, 伸长节间

Abstract: Lodging is one of the key limiting factors causing serious yield decline in maize cultivation, the plant growth regulator ethephon and its complex formulation are applied to improve quality and lodging-resistance ability of stalks, which is an effective way to prevent stalk lodging. The responses in plant-type, physiological and biochemical characteristics of maize hybrid Nongda 108, Ludan 981 and their corresponding parents Xu 178, Huang-C, Qi 319, and lx9801 varieties, were studied in field condition, with 200 mg L-1 ethephon foliage spray at jointing stage. The results showed that ethephon significantly inhibited the elongation of the first to sixth basal internodes for Nongda 108 and Ludan 981, the plant height and the ear height of Nongda 108 and Ludan 981 were significantly reduced. Ethephon remarkably increased the activities of phenylalanine ammonia lyase (PAL) and indole acetic acid oxidase (IAAO) and content of abscisic acid (ABA) in elongating internodes, and decreased contents of auxin (IAA) and gibberellin (GA4). The genetic traits were analyzed, the plant height and the ear height of Xu 178, Huang-C, Qi 319, and lx9801 were significantly reduced after ethephon treating, and the length of basal internodes was shortened significantly. The PAL and IAAO activities in elongating internodes were significantly increased after ethephon treating. The endogenous IAA content of elongating internodes was significantly decreased, ABA content was significantly increased, but GA4/ABA ratio was significantly decreased. It is indicated that the response differences to ethephon among different hybrids may be attributed to the different sensitivities of the parents lines, showing corresponding performance in plant height, ear height, PAL, IAAO activities and endogenous hormone levels.

Key words: Ethephon, Maize, Elongating internodes

[1]Gou L(勾玲), Huang J-J(黄建军), Zhang B(张宾), Li T(李涛), Sun R(孙锐), Zhao M(赵明). Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin (作物学报), 2007, 33(10): 1688?1695 (in Chinese with English abstract)
[2]Chen Z(陈增), Ke Y-P(柯永培), Yuan J-C(袁继超), Shi H-C(石海春), Duan B-K(段必康), Xie B(谢冰), Yang S-M(杨世民). Effects of maize roborant and uniconazole on plant height and yield of hybrid maize Zhenghong 311 in Panxi region. Chin  Agric Sci Bull (中国农学通报), 2007, 23(4): 190?192 (in Chinese with English abstract)
[3]Flint-Garcia S A, Darrah L L, McMullen M D, Hibbard B E. Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet, 2003, 107: 1331?1336
[4]Esechie H A, Rodriguez V, Al-Asmi H S. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. Eur J Agron, 2004, 21: 21?30
[5]Shekoofa A, Yahya E. Plant growth regulator (ethephon) alters maize (Zea mays L.) growth, water use and grain yield under water stress. J Agron, 2008, 7: 41?48
[6]Cai Y-W(蔡永旺), Zhang Y-H(张英华), Zhou S-L(周顺利), Lu L-Q(鲁来清), Wang Z-M(王志敏). Effects of concave canopy structure shaped with ethephon on yield and its correlated characters in summer maize. J Maize Sci (玉米科学), 2010, 18(3): 90?94 (in Chinese with English abstract)
[7]Cox W J, Andrade H F. Growth, yield and yield components of maize as influenced by ethephon. Crop Sci, 1988, 28: 536?542
[8]Dong X-H(董学会), Duan L-S(段留生), He Z-P(何钟佩), Tian X-L(田晓莉), Li J-M(李建民), Wang B-M(王保民), Li Z-H(李召虎). Effects of 30% diethyl-amino-ethyle-hexanoate•ethephon aqueous solution on physiological activities of maize roots. Acta Agron Sin (作物学报), 2005, 31(11): 1500?1505 (in Chinese with English abstract)
[9]Li S-K(李少昆), Tu Y-H(涂玉华), Zhang W-F(张旺峰). Effect of ethephon on plant type and yield in maize and application in production. Gengzuo yu Zaipei (耕作与栽培), 1991, (5): 25?28 (in Chinese)
[10]Rajala A, Peltonen-sainioa P, Onnela M, Jackson M. Effects of applying stem-shortening plant growth regulators to leaves on root elongation by seedlings of wheat, oat and barley: mediation by ethylene. Plant Growth Regul, 2002, 38: 51?59
[11]Rzewuski G, Sauter M. Ethylene biosynthesis and signaling in rice. Plant Sci, 2008, 175: 32?42
[12]Azuma T, Hatanaka T, Uchida N, Yasuda T. Interactions between abscisic acid, ethylene and gibberellin in internodal elongation in floating rice: the promotive effect of abscisic acid at low humidity. Plant Growth Regul, 2003, 41: 105?109
[13]Koch B L, Moore T C. On ethylene and stem elongation in green pea seedlings. Plant Physiol, 1990, 93: 1663?1664
[14]Li H-S(李合生). Principles and Technology of Plant Physiology and Biochemistry Experiments (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 213?214 (in Chinese)
[15]Zhang Z-L(张志良). Experiments Guidance of Plant Physiology (植物生理学实验指导). Beijing: Higher Education Press, 1996. pp 210?213 (in Chinese)
[16]He Z-P(何钟佩). Experimental Guide for Chemical Control of Crops (农作物化学控制实验指导). Beijing: Beijing Agricultural University Press, 1993. pp 60?68 (in Chinese)
[17]Xue J-T(薛金涛), Zhang B-M(张保明), Dong Z-Q(董志强), Zhao M(赵明). Effect of chemical regulation on lodging and yield of maize. Crops (作物杂志), 2008, (4): 72?76 (in Chinese with English abstract)
[18]Li J-M(李建民), Dong X-H(董学会), He Z-P(何钟佩), Hu X-J(胡晓军), Duan L-S(段留生), Li Z-H(李召虎). Effects of mixture of ethephon and mepiquat chloride on growth and yield of summer corn. Chin J Pesticide Sci (农药学学报), 2004, 6 (4): 83?88 (in Chinese with English abstract)
[19]Yuan M-D(原牡丹), Hou Z-X(侯智霞), Zhai M-P(翟明普), Su Y(苏艳). The research advances on indole-3-acetic acid (IAA) catabolism related enzymes: IAA oxidase (IAAO), peroxidase (POD). Chin Agric Sci Bull (中国农学通报), 2008, 24(8): 88?92 (in Chinese with English abstract)
[20]Jain M L, Kadkade P G, van Hugysse P. The effect of growth regulation chemicals on abscission and IAA-oxidizing enzyme of dwarf been seeding. Physiol Plant, 1969, 22: 1033?1042
[21]Okada T, Mikage M, Sekita S. Molecula characterization of the phenylalanine ammonia-lyase from Ephedra sinica. Biol Pharm Bull, 2008, 31: 2194?2199
[22]MacDonald M J, D’Cunha G B. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol, 2007, 85: 273?282
[23]Nakashima J, Awano T, Takabe K, Fujita M, Saiki H. Immunocytochemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells. Plant Cell Physiol, 1997, 38: 113?123
[24]Lafuente M T, Zacarias L, Martínez-Téllez M A, Sanchez-  Ballesta M T, Dupille E. Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J Agric Food Chem, 2001, 49: 6020?6025
[25]Diallinas G, Kanellis A K. A phenylalanine ammonialyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Mol Biol, 1994, 26: 473?479
[26]Rickey T M, Belknapk W R. Comparison of the expression of several stress responsive genes in potato tubes. Plant Mol Biol, 1991, 16: 1009?1018
[27]Jiang Y M, Joyce D C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul, 2003, 39: 171?174
[28]Ye M-R(叶梅荣), Zhu C-H(朱昌华), Gan L-J(甘立军), Xia K(夏凯). Hormonal interactions in the control of plant stem elongation. Chin Agric Sci Bull (中国农学通报), 2007, 23(4): 228?231 (in Chinese with English abstract)
[29]Sauter M, Kende H. Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta, 1992, 188: 362?368
[30]Kende H, van der Knaap E, Cho H T. Deepwater rice: a model plant to study stem elongation. Plant Physiol, 1998, 118: 1105?1110
[31]Yang S H, Choi D. Characterization of genes encoding ABA 80-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem Biophys Res Commun, 2006, 350: 685?690
[32]Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol, 1992, 99: 1156?1161
[33]Lorbiecke R, Sauter M. Induction of cell growth and cell division in the intercalary meristem of submerged deepwater rice (Oryza sativa L.). Planta, 1998, 204: 140?145
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!