Rice,Panicle,Apical abortion,QTL,Genetic analysis,"/> 水稻穗顶部退化突变体L-05261的遗传分析
欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1935-1941.doi: 10.3724/SP.J.1006.2011.01935

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻穗顶部退化突变体L-05261的遗传分析

高素伟,张玲,毛毕刚,王久林,程治军*,万建民   

  1. 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2011-03-04 修回日期:2011-06-25 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 程治军, E-mail: chengzj5rs@yahoo.com.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项项目(2009ZX08009-104B),国家自然科学基金项目(30871498)和国家重点基础研究发展计划(973计划)项目(2010CB125904)资助。

Genetic Analysis of Rice Mutant L-05261 with Panicle Apical Abortion Trait

GAO Su-Wei,ZHANG Ling,MAO Bi-Gang,WANG Jiu-Lin,CHENG Zhi-Jun*,WAN Jian-Min   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-03-04 Revised:2011-06-25 Published:2011-11-12 Published online:2011-09-06
  • Contact: 程治军, E-mail: chengzj5rs@yahoo.com.cn

摘要: 稻穗顶部小穗退化降低单株产量,严重影响水稻单产。对穗顶部明显退化材料L-05261的研究表明,小穗退化可能与稻穗内部过氧化氢的积累有关。2个非穗顶部退化品种和2个轻微穗顶部退化品种与L-05261杂交所得F1植株稻穗顶部都呈现穗退化表型,F2群体的小穗退化率均呈连续分布,但表型偏向非穗退化亲本。在组合L-05261×IRAT129 F2群体中,顶部小穗退化与非退化单株的比例适合63︰1;同一组合的BC1F1回交群体中,顶部小穗退化与非退化植株比例接近7︰1。表明穗顶部小穗退化表型受3对或3对以上显性或部分显性基因控制。利用上述群体中的182个单株,在第3、第4、第5、第8染色体上分别检测到qPAA3qPAA4qPAA5qPAA8 4个QTL,它们之间不存在互作,合计可解释46.32%的表型变异,其余的表型变异可能是由环境条件的变化造成的。

关键词: 水稻, 顶部退化, QTL, 遗传分析

Abstract: In rice, panicle apical abortion (PAA) has a detrimental effect on the final yield. Using one PAA mutant L-05261, we found that the occurrence of PAA is related to the excess accumulation of hydrogen peroxides (H2O2). The hybrid plants of four cross-combinations from two less PAA varieties of 9311, PA64, and two non-PAA varieties of Balilla and IRAT129 crossed to L-05261 showed PAA phenotypes, on their F2 populations, the percentages of PAA showed a continuous distribution and a bias towards non-PAA parents. The ratio of PAA plants and non-PAA plants in the L-05261×IRAT129 F2 fitted to 63:1, while the ratio in the BC1F1consisted of 7:1, corresponding to a genetic model involving three or more partial dominant genes. One hundred and eighty-two individuals from F2 of L-05261×IRAT129 were employed for QTL analysis, and four QTLs designated as qPAA3, qPAA4, qPAA5, and qPAA8 respectively, were detected out.However, no significantinteraction was found among these QTLs. Totally, all four QTLs were able to explain 46.32% of observed phenotypic variation. The remaining phenotypic variation was likely caused by environment effect, which should be considered in the following study.

Key words: font-family: "Times New Roman", mso-fareast-font-family: 宋体, mso-font-kerning: 1.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, Rice')">mso-bidi-language: AR-SA">Rice, Panicle, Apical abortion, QTL, Genetic analysis

[1]Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758
[2]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767
[3]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741–745
[4]Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet, 2008, 116: 789–796
[5]Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N. Identification of candidate genes for grain number in rice (Oryza sativa L.). Functional & Integrative Genomics, 2010, 10: 339–347
[6]Liu T M, Mao D H, Zhang S P, Xu C G, Xing Y Z. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet, 2009, 118: 1509–1517
[7]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171
[8]Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan J M. Quantitative Trait Loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008, 179: 2239–2252
[9]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630
[10]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028
[11]Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16
[12]Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374
[13]Li J M, Thomson M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the Pericentromeric region of rice chromosome 3. Genetics, 2004, 168: 2187–2195
[14]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613–622
[15]Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1:1. Plant J, 2005, 42: 641–651
[16]Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H G, Tang S Z, Gu M H, Liang G H. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183: 315–324
[17]Zhu K M, Tang D, Yan C J, Chi Z C, Yu H X, Chen J M, Liang J S, Gu M H, Cheng Z K. ERECT PANICAL2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 2010, 184: 343–350
[18]Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J, 2007, 51: 1030–1040
[19]Yamagishi J, Miyamoto N, hirotsu S, Laza R C, Nemoto K. QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica tropical japonica cross. Theor Appl Genet, 2004, 109: 1555–1561
[20]Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1 encodes a putative PTR transporter and determines rice panicle size. Plant J, 2009, 58: 592–605
[21]Xu H-S(徐华山), Sun Y-J(孙永建), Zhou H-J(周红菊), Yu S-B(余四斌). Development and characterization of contiguous segment substitution lines with background of elite restorer line. Acta Agron Sin (作物学报), 2007, 33(6): 979–986 (in Chinese with English abstract)
[22]Tan C J, Sun Y J, Xu H S, Yu S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breed, 2011, 130:177-184
[23]Isono P D, Varner J E. Hydrogen peroxide and lignification. Plant J, 1993, 4: 887–892
[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325
[25]Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915–919
[26]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257–279
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!