欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2039-2045.doi: 10.3724/SP.J.1006.2011.02039

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米和高粱用于碳同化和光呼吸的电子效率估算

康华靖1,陶月良2,王立新1,叶子飘3,4,李红1   

  1. 1 温州科技职业学院园林系,浙江温州325006; 2 温州大学生命与环境科学学院, 浙江温州325035;3 井冈山大学井冈山生态环境研究中心,江西吉安343009; 4 井冈山大学数理学院,江西吉安343009
  • 收稿日期:2011-01-21 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 叶子飘, E-mail: yezp@jgsu.edu.c
  • 基金资助:

    本研究由国家自然科学基金项目(30960031),江西省自然科学基金项目(2009GZN0076)和浙江省新世纪高等教育教学改革项目(ZC09154)资助。

Estimation of Use Efficiency of Electrons in Fixation of CO2 and Photorespiration for Maize (Zea mays) and Sorghum (Sorghum bicolor) under Photorespiratory Conditions

KANG Hua-Jing1,TAO Yue-Liang2,WANG Li-Xin1,YE Zi-Piao3,4,*,LI Hong1   

  1. 1 Department of Landscape Architecture, Wenzhou Vocational & Technical College, Wenzhou 325006, China; 2 College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; 3 Research Center for Jinggangshan Eco-Environmental Sciences, Jinggangshan University, Ji’an 343009, China; 4 Maths & Physics College, Jinggangshan University, Ji’an 343009, China
  • Received:2011-01-21 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 叶子飘, E-mail: yezp@jgsu.edu.c

摘要: 为了探讨C4植物碳同化和光呼吸的电子效率,运用Li-6400光合仪同时测定玉米和高粱在30℃和380 μmol CO2 mol-1下叶片的气体交换和叶绿素荧光,结果表明,直角双曲线修正模型可较好地拟合所测的光响应曲线和快速光曲线,其拟合值与实测值较为一致。在此基础上算得玉米和高粱在光呼吸条件下参与碳同化的电子流分别为198.60 μmol m-2 s-1和178.00 μmol m-2 s-1,所占比率分别为75.34%和74.81%;参与光呼吸的电子流分别为7.04 μmol m-2 s-1和7.84 μmol m-2 s-1,所占比率分别为2.67%和3.29%。而根据Valentini和Epron的方法算得玉米和高粱碳同化的电子流分别为210.45 μmol m-2 s-1和188.54 μmol m-2 s-1,所占比例分别为82.68%和79.24%;参与光呼吸的电子流则分别为45.67 μmol m-2 s-1和49.40 μmol m-2 s-1,所占比率分别为17.32%和20.76%。以前法研究表明,玉米和高粱在光呼吸条件下,来自PSII的电子除流向光呼吸和碳还原外,还存在其他消耗电子的途径,证明其他消耗电子的途径并不能被忽略或其他途径所消耗电子的量并不是常数。后法过高地估算了玉米和高粱叶片中来自PSII的电子用于光呼吸的消耗量。两法的结果相差6倍左右。这对重新评估光呼吸在植物的光保护中所起的作用提供了理论依据。

关键词: 高粱, 玉米, 光合模型, 电子流量, 光系统II

Abstract: Gas exchange and chlorophyll fluorescence for maize (Zea mays L.) and sorghum (Sorhumbicolor L.) at 380 μmol CO2 mol-1 and 30℃under photorespiratory condition, using a gas analyzer Li-6400, were measured. The results showed that the light response curve and rapid light curve (RLC) were well simulated by a modified rectangular hyperbola model. Calculation based on the simulated results indicated the electron flows to fix CO2 for maize and sorghum were 198.60 and 178.00 μmol m-2 s-1, with the rate of 75.34% and 74.81%, respectively. The electron flows in photorespiration of maize and sorghum were 7.04 and 7.84 μmol m-2 s-1, with the rate of 2.67% and 3.29%, respectively. While by method of Valentini and Epron, the electron flows to fix CO2 of maize and sorghum were 217.92 and 188.54 μmol m-2 s-1, with the rate of 82.68% and 79.24%, respectively, and those in photorespiration of maize and sorghum were 45.67 and 49.40 μmol m-2 s-1, with the rate of 17.32% and 20.76%, respectively. The results obtained by the former method showed that some electrons via PSII were used to CO2 assimilation and photorespiration, whereas others associated with electron-consuming processes (e.g. O2 acceptor cycle or water-water cycle) which should not be ignored, and the electron-consumption in this process was not constant under photorespiratory conditions. While the electron flows via PSII in photorespiration of maize and sorghum were overestimated by the latter method. The value of electron flows in photorespiration calculated by the latter method was about six times higher than those by the former. This is very important to evaluate the effect of photorespiration for plant protection.

[1]Bjokman O, Demming-Adams B. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schuhe E D, Caldwell M M, eds. Ecophysiology of Photosynthesis. Berlin: Springer, 1994
[2]Foyer C, Fmbank R, Harbinson J, Horton P. The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res, 1990, 25: 83-100
[3]Peterson R B. Partitioning of noncyelic photosynthetic electron transport to O2-dependent dissipative processes as probed by fluorescence and CO2 exchange. Plant Physiol, 1989, 90: 1322-1328
[4]Laisk A, Loreto F. Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Plant Physiol, 1996, 110: 903-912
[5]Demmig-Adams B, AdamsⅢ W W, Barker D H, Logan B A, Verhoeven A S, Bowling D R. Using chlorophll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excees excitation. Physiol Plant, 1996, 98: 253-264
[6]Zhou K-J(周可金), Xiao W-N(肖文娜), Guan C-Y(官春云). Analysis on photosynthetic characteristics and chlorophyll fluorescence of siliques for different winter rapeseed varieties (Brass icanapus L.). Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(3): 316-321 (in Chinese with English abstract)
[7]Rascher U, Liebig M, Lüttge U. Evalution of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ, 2000, 23: 1397-1405
[8]Lin Z-F(林植芳), Peng C-L(彭长连), Sun Z-J(孙梓健), Lin G-Z(林桂珠). The influence of light intensity on photosynthetic electron transport partitioning in photorespiration for four subtropical forest species. Sci China (Ser C) (中国科学?C辑), 2000, 30(1): 72-77 (in Chinese with English abstract)
[9]Yang C-W(阳成伟), Peng C-L(彭长连), Duan J(段俊), Chen Y-Z(陈贻竹). Photosynthetic electron transport and allocation during the growth of flag leaves of rice and their relationship with photosynthesis. Chin Bull Bot (植物学通报), 2002, 19(3): 322-327 (in Chinese with English abstract)
[10]Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Tukey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ, 1995, 18: 631-640
[11]Epron D, Godard D, Cornic G, Genty B. Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvation L. and Castanea sativa Mill). Plant Cell Environ, 1995, 18: 43-51
[12]Cheng L L, Fuchigami L H, Breen P J. The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. J Exp Bot, 2001, 52 (362): 1865-1872
[13]Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot, 2003, 54: 2393-2401
[14]Fila G, Badeck F W, Meyer S, Cerovic Z, Ghashghaie J. Relationship between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapeving plants, before and after ex vitro acclimatization. J Exp Bot, 2006, 57: 2687-2695
[15]Losciale P, Chow W S, Grappadelli L C. Modulating the light environment with the peach ‘asymmetric orchard’: effects on gas exchange performances, photoprotection, and photoinhibition. J Exp Bot, 2010, 61: 1177-1192
[16]Cornic G, Briantais J M. Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentration and during drought stress. Planta, 1991, 183: 178-184
[17]Krall J P, Edward G E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant, 1992, 86: 180-187
[18]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87-92
[19]Ehleringer J, Pearcy R W. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol, 1983, 73: 555-559
[20]Major K M, Dunton K H. Variations in light-harvesting characteristics of the seagrasses, Thalassia testudinum: evidence for photoacclimation. J Exp Mar Biol Ecol, 2002, 275: 173-189
[21]Ye Z P. A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 2007, 45: 637-640
[22]Ye Z P, Yu Q. A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 2008, 46: 637-640
[23]Peterson R B. Partitioning of noncyclic photosynthetic electron transport to O2-dependent dissipative processes as probed by fluorescence and CO2 exchang. Plant Physiol, 1989, 90: 1322-1328
[24]Ma X-Y(马小英), Jiao G-L(焦根林). Study on photosynthetic characteristics of two kinds of Manglietia and application of light response correction model. J Anhui Agric Sci (安徽农业科学), 2009, 37(29): 14488-14491 (in Chinese with English abstract)
[25]Hu W-H(胡文海), Hu X-H(胡雪华), Zeng J-J(曾建军), Duan Z-H(段智辉), Ye Z-P(叶子飘). Effects of drought on photosynthetic characteristics in two pepper cultivars. J Huazhong Agric Univ (华中农业大学学报), 2008, 27(6): 776-781 (in Chinese with English abstract)
[26]Hou Z-Y(侯智勇), Hong W(洪伟), Li J(李键), Lin H(林晗), Fan H-L(范海兰), Chen C(陈灿), Wu C-Z(吴承祯). Study on light response curves of photosynthesis of different Ecucalyptus clones. J Fujian Coll For (福建林学院学报), 2009, 29(2): 97-102 (in Chinese with English abstract)
[27]Hu G-M(户桂敏), Wang W-T(王文天), Peng S-L(彭少麟). The competitive performance of Ipomoea cairica and Schefflera octophylla under different N/P ratios. Ecol Environ Sci (生态环境学报), 2009, 18(4): 1449-1454 (in Chinese with English abstract)
[28]Fu F-Z(富丰珍), Xu C-Y(徐程扬), Li G-D(李广德), Jia L-M(贾黎明). Effects of canopy position on photosynthesis physiological characteristics of triploid clones of Populus tomentosa. J Central South Univ For & Technol (中南林业科技大学学报), 2010, 30(3): 95-99 (in Chinese with English abstract)
[29]Jia Y-M(焦裕媚), Wei X-L(韦小丽). Application of two photosynthetic light response and CO2 response curve-fitting models on Karst species. Guizhou Agric Sci(贵州农业科学), 2010, 38(4): 162-167 (in Chinese with English abstract)
[30]Wang Y(王勇), Zhang X(张曦), Shen Y-B(沈应柏), Hu Z-H(胡增辉). Effects of different nitrogen levels on the photosynthesis characteristics of six new clones of Populus deltoids. Acta Agric Boreali-Occident Sin (西北农业学报), 2010, 19(3): 168-173 (in Chinese with English abstract)
[31]Xu Z-F(徐振锋), Hu T-X(胡庭兴), Zhang L(张力), Zhang Y-B(张远彬), Xian J-R(鲜骏仁), Wang K-Y(王开运). Short-term gas exchange responses of Betula utilis to simulated global warming in a timberline ecotone, eastern Tibetan Plateau, China. Chin J Plant Ecol (植物生态学报), 2010, 34 (3): 263-270 (in Chinese with English abstract)
[32]Harrison W G, Platt T. Photosynthesis-irradiance relationship in polar and temperate phytoplankton populations. Polar Biol, 1986, 5: 153-164
[33]Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res, 1980, 38: 687-701
[34]Rascher U, Liebig M, Lüttge U. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ, 2000, 23: 1397-1405
[35]Ralph P J, Gademann R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Bot, 2005, 82: 222-237
[36]Han Z-G(韩志国), Lei L-M(雷腊梅), Han B-P(韩博平). Change in rapid light curves of Phaeodactylum tricornutum and Prorocentrum dentatum during light-dark cycles. J Tropical Oceanogr (热带海洋学报), 2005, 24(6): 13-21 (in Chinese with English abstract)
[37]Han Z-G(韩志国), Ou-yang H(欧阳昊), Lin X(林娴), Lei L-M(雷腊梅), Han B-P(韩博平). Photoacclimation of Chlorella pyrenoidosa: changes in rapid curves. Ecol Sci (生态科学), 2006, 25(1): 32-33 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!