欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1205-1211.doi: 10.3724/SP.J.1006.2012.01205

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦地方品种高分子量谷蛋白亚基多样性分析

徐鑫1,2,**,李小军1,3,**,张玲丽1,4,李秀全1,杨欣明1,李立会1,*   

  1. 1中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京 100081;2新乡学院生命科学与技术系,河南新乡 453003;3河南科技学院生命学院,河南新乡 453003;4西北农林科技大学农学院,陕西杨凌 712100
  • 收稿日期:2011-11-24 修回日期:2012-02-23 出版日期:2012-07-12 网络出版日期:2012-05-11
  • 通讯作者: 李立会, E-mail: lilihui@caas.net.cn, Tel: 010-62186670 ** 同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(200611B100201)资助。

Genetic Diversity of High-Molecular-Weight Glutenin Subunit Composition in Chinese Wheat Landraces

XU Xin1,2,**,LI Xiao-Jun1,3,**,ZHANG Ling-Li1,4,LI Xiu-Quan1,YANG Xin-Ming1,LI Li-Hui1,*   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facilities for Crop Genetic Resources and Improvement, Beijing 100081, China; 2Department of Life Sciences and Technology, Xinxiang University, Xinxiang 453003, China; 3School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China; 4College of Agronomy, Northwest Sci-Tech University of Agriculture and Forestry, Yangling 712100, China
  • Received:2011-11-24 Revised:2012-02-23 Published:2012-07-12 Published online:2012-05-11
  • Contact: 李立会, E-mail: lilihui@caas.net.cn, Tel: 010-62186670 ** 同等贡献(Contributed equally to this work)

摘要: 采用SDS-PAGE方法,对我国9个麦区的76份代表性地方品种的高分子量谷蛋白亚基(HMW-GS)组成比较分析,并探讨其与环境因素(平均海拔、年平均降雨量和年平均温度)的相关性。结果表明,25.0%的品种具有异质性,分别包含2~4种不同HMW-GS组合;在Glu-1位点共检测到14个等位变异,其中Glu-A1Glu-B1Glu-D1等位变异数分别为2、7和5;发现了3个新等位变异,包括Glu-B1位点2个和Glu-D1位点1个。所有等位变异构成16种不同的亚基组合类型,以(N, 7+8, 2+12)为主,频率为69.7%。在Glu-1位点上,不同麦区遗传多样性分布存在一定的不均衡性,年平均降雨量和年平均温度与麦区多样性指数呈负相关。推测环境压力可能是地方品种多样性地区分化的重要因素。

关键词: 小麦地方品种, 高分子量谷蛋白亚基, 多样性, 环境因素

Abstract: The high-molecular-weight glutenin subunit (HMW-GS) composition of 76 representative accessions of wheat landraces, collected from nine agro-ecological zones in China, were examined by sodium-dodecyl-sulphate polyacrylamide-gel electrophoresis (SDS-PAGE). The correlation between diversity indexes at Glu-1 locus and altitude, mean annual precipitation, or mean annual temperature was also analyzed. The results indicated that 19 accessions (25.0%) were heterogeneous for HMW glutenin subunit composition, and contained 2–4 HMW-GS compositions generally. At Glu-1 locus, a total of 14 different glutenin alleles were observed and the number of alleles at Glu-A1, Glu-B1, and Glu-D1 was 2, 7, and 5, respectively. Three novel alleles were identified, consisting of two alleles at Glu-B1 and one allele at Glu-D1 locus. The 14 alleles resulted in 16 different HMW subunit combinations, and the combination (null, 7+8, 2+12) was the major type with the frequency of 69.7%. The genetic diversity indexes for HMW glutenin subunits varied among agro-ecological zones, and were negatively correlated with mean annual precipitation and mean annual temperature. Environmental stress is speculated to be an important factor for the differentiation of diversity in wheat landraces across regions.

Key words: Wheat landrace, HMW-GS, Diversity, Environmental factor

[1]Tian Q Z, Zhou R H, Jia J Z. Genetic diversity trend of common wheat (Triticum aestivum L.) in China revealed with AFLP markers. Genet Resour Crop Evol, 2005, 52: 325–331

[2]Reif J C, Zhang P, Dreisigacker S, Warburton M L, van Ginkel M, Hoisington D, Bohn M, Melchinger A E. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 2005, 110: 859–864

[3]Fu Y, Peterson G W, Richards K W, Somers D, DePauw R M, Clarke J M. Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet, 2005, 110: 1505–1516

[4]Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718–722

[5]Gregová E, Hermuth J, Kraic J, Dotla?il L. Protein heterogeneity in European wheat landraces and obsolete cultivars. Genet Resour Crop Evol, 1999, 46: 521–528

[6]Cai S, Bai G H, Zhang D. Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet, 2008, 117: 49–56

[7]Du X-Y(杜小燕), Hao C-Y(郝晨阳), Zhang X-Y(张学勇), Ma Z-Q(马正强), You G-X(游光霞), Wang L-F(王兰芬), Dong Y-C(董玉琛). Genetic diversity of waxy gene in Chinese wheat landraces. Acta Agron Sin (作物学报), 2007, 33(3): 503–506 (in Chinese with English abstract)

[8]Dong Y-C(董玉琛), Zheng D-S(郑殿升). Wheat Genetic Resources in China (中国小麦遗传资源). Beijing: China Agriculture Press, 2000 (in Chinese)

[9]Harlan J R. Our vanishing genetic resources. Science, 1975, 188: 618–621

[10]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)

[11]Hirano R, Kikuchi A, Kawase M, Watanabe K N. Evaluation of genetic diversity of bread wheat landraces from Pakistan by AFLP and implications for a future collection strategy. Genet Resour Crop Evol, 2008, 55: 1007–1015

[12]Nakamura H. Genetic diversity of high-molecular-weight glutenin subunit compositions in landraces of hexaploid wheat from Japan. Euphytica, 2001, 120: 227–234

[13]Liu Y, Xiong Z Y, He Y G, Shewry P R, He G Y. Genetic diversity of HMW glutenin subunit in Chinese common wheat (Triticum aestivum L.) landraces from Hubei province. Genet Resour Crop Evol, 2007, 54: 865–874

[14]Ruiza M, Rodriguez-Quijanob M, Metakovskyb E V, Vazquezb J F, Carrillo J M. Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crop Res, 2002, 79: 185–196

[15]He D, Li H, Xu S, Duan X, Zhou Y, Li L. Reaction to powdery mildew and stripe rust in related species and landraces of wheat. Genet Resour Crop Evol, 2007, 54: 213–219

[16]Bajracharya J, Rana R B, Gauchan D, Sthapit B R, Jarvis D I, Witcombe J R. Rice landrace diversity in Nepal. Socio-economic and ecological factors determining rice landrace diversity in three agro-ecozones of Nepal based on farm surveys. Genet Resour Crop Evol, 2010, 57: 1013–1022

[17]Jaradat A A. Grain protein variability among populations of wild barley (Hordeum spontaneum C. Koch.) from Jordan. Theor Appl Genet, 1991, 83: 164–168

[18]Li Y C, Fahima T, Korol A B, Peng J H, Röder M S, Kirzhner V, Beiles A, Nevo E. Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in north Israel. Mol Biol Evol, 2000, 17: 851–862

[19]Lázaro A, Ruiz M, Rosa L, Martín I. Relationships between agro/morphological characters and climatic parameters in Spanish landraces of lentil (Lens culinaris Medik.). Genet Resour Crop Evol, 2001, 48: 239–249

[20]Zhang L-L(张玲丽), Li X-Q(李秀全), Yang X-M(杨欣明), Li H-J(李洪杰), Wang H(王辉), Li L-H(李立会). High-molecular-weight glutenin subunit composition of Chinese wheat germplasm. Sci Agric Sin (中国农业科学), 2006, 39(12): 2406–2414 (in Chinese with English abstract)

[21]Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutein in hexaploid wheat. Cereal Res Commun, 1983, 11: 29–35

[22]Nei M. Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA, 1973, 70: 3321–3323

[23]Peña R J, Zarco-Hernandez J, Mujeeb-Kazi A. Glutenin subunit compositions and breading-making quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (Coss.) Schmal crosses. J Cereal Sci, 1995, 21: 15–23

[24]Tang Y-L(汤永禄), Yang W-Y(杨武云), Tian J-C(田纪春), Li J(李俊), Chen F(陈放). Effect of HMW-GS 6+8 and 1.5+10 on wheat quality traits in synthetic hexaploid wheat. Agric Sci China (中国农业科学), 2008, 41(11): 3465–3476 (in Chinese with English abstract)

[25]Ruiz M, Metakovsky E V, Rodriguez-Quijano M, Vazquez J F, Carrillo J M. Assessment of storage protein variation in relation to some morphological characters in a sample of Spanish landraces of common wheat (Triticum aestivum L. ssp. aestivum). Genet Resour Crop Evol, 2002, 49: 371–382

[26]Wei Y-M(魏育明), Zheng Y-L(郑有良), Liu D-C(刘登才), Zhou Y-H(周永红), Lan X-J(兰秀锦). Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles in Sichuan wheat landraces. Acta Bot Sin (植物学报), 2000, 42(5): 496–501 (in Chinese with English abstract)

[27]Zhang X-Y(张学勇), Pang B-S(庞斌双), You G-X(游光霞), Wang L-F(王兰芬), Jia J-Z(贾继增), Dong Y-C(董玉琛). Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.) germplasms. Agric Sci China (中国农业科学), 2002, 35(11): 1302–1310 (in Chinese with English abstract)

[28]Amirouche R, Misset M T. Hordein polymorphism in diploid and tetraploid Mediterranean populations of the Hordeum murinum L. complex. Plant Syst Evol, 2003, 242: 83–99

[29]Nevo E, Payne P I. Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. Theor Appl Genet, 1987, 74: 827–836

[30]Allard R W. Genomic basis of the evolution of adaptedness in plants. Euphytica, 1996, 92: 1–11

[31]Sertse D, Gailing O, Eliades N, Finkeldey R. Anthropogenic and natural causes in?uencing population genetic structure of Juniperus procera Hochst. ex Endl. in the Ethiopian highlands. Genet Resour Crop Evol, 2011, 58: 849–859

[32]Rana R B, Garforth C, Sthapit B, Jarvis D. In?uence of socio-economic and cultural factors in rice varietal diversity management on-farm in Nepal. Agric Human Values, 2007, 24: 461–472
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[6] 张玮, 洪艳云, 刘登望, 张博文, 易图永, 李林. 施钙对酸性红壤花生根系内生细菌群落结构的影响[J]. 作物学报, 2021, 47(1): 116-124.
[7] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[8] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[9] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[10] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[11] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[12] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[13] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[14] 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805.
[15] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!