欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1212-1220.doi: 10.3724/SP.J.1006.2012.01212

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

油菜Nsa CMS候选恢复基因的来源及表达

张洪,付丽,李云昌,刘佳,梅德圣,彭鹏飞,陈玉峰,胡琼*   

  1. 中国农业科学院油料作物研究所国家油料作物改良中心 / 农业部油料作物生物学与遗传育种重点开放实验室,湖北武汉430062
  • 收稿日期:2011-11-15 修回日期:2012-02-22 出版日期:2012-07-12 网络出版日期:2012-04-23
  • 通讯作者: 胡琼, E-mail: huqiong@oiolcrops.cn, Tel: 027-86711556
  • 基金资助:

    本研究由国家高技术发展研究计划(863计划)项目(2011AA10A104), 国家自然科学基金项目(30871553, 31000725)和武汉市学科带头人项目(210151730564)资助。

Origin and Expression of Nsa CMS Candidate Restorer Gene

ZHANG Hong,FU Li,LI Yun-Chang,LIU Jia,MEI De-Sheng,PENG Peng-Fei,CHEN Yu-Feng,HU Qiong*   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, National Center for Oil Crops Improvement / Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2011-11-15 Revised:2012-02-22 Published:2012-07-12 Published online:2012-04-23
  • Contact: 胡琼, E-mail: huqiong@oiolcrops.cn, Tel: 027-86711556

摘要: 根据同源序列法克隆的Nsa CMS候选恢复基因PPR618的序列,采用PCR方法在Nsa CMS不育系、恢复系、原始体细胞杂交亲本以及其他甘蓝型油菜品种中共克隆出22个同源序列。序列分析表明,野芥亲本野油18、甘蓝型油菜亲本中双4号各含有2个同源序列,而Nsa CMS 4个恢复系则分别含有3、1、1、1个同源序列。恢复系中候选恢复基因的序列与野芥亲本野油18的同源序列的一致性在93%以上,其中恢1、恢3和恢4中至少有一个同源序列与野油18的第一个同源序列完全相同,恢2中的同源序列与野油18的第2个同源序列完全相同;但与甘蓝型油菜的同源序列一致性均低于80%,说明候选恢复基因来源于新疆野芥,而不是甘蓝型油菜。除了原来的PPR618外,获得了3个来源于恢复系的新候选恢复基因。候选恢复基因在序列上与萝卜和矮牵牛的恢复基因一致性较高。半定量RT-PCR分析表明,候选恢复基因在恢复系中多个组织都有表达,但在根、茎中表达量特别少。随着营养器官到生殖器官的发育逐渐升高,候选恢复基因在恢复系中表达量最高的是雄性败育关键时期, 即1.5~2.5 mm的花蕾中,但不育系中的同源基因在茎中的表达量则相对高于其他组织。

关键词: Nsa CMS, 恢复基因, 同源序列, 表达

Abstract:  Nsa cytoplasmic male sterility (CMS) is a novel CMS system develpoed by somatic hybridization between Brassica napus and Sinapis arvensis. The cloning the restorer genes for Nsa CMS is important for both the development of better restorers and the mechanism understanding of fertility restoration. A candidate restorer gene named PPR618 of Nsa CMS was cloned based on the homologue sequencing strategy previously. In this study, based on sequence information of PPR618, 22 homologous sequences were identified in Nsa CMS male sterile line, Nsa CMS restorer lines, the original fusion parents which gave rise to Nsa CMS and several other B. napus lines as well as one B. oleracea and one B. rapa accessions. Sequence analysis showed that there are two PPR618 homologues in each of the fusion parental lines, S. arvensis var. Yeyou 18 and B. napus var. Zhongshuang 4, whereas there were three, one, one, and one PPR618 homologues in the four restorers, Hui 1, Hui 2, Hui 3, and Hui 4, respectively. The identity of the homologous genes in restorers was above 93% to those in Yeyou 18, but less than 80% to those in Zhongshuang 4, implicating the candidate restorer genes of Nsa CMS originated from S. arvensis. Both homologues in S. arvensis were found in the restorers, one in Hui1, Hui 3, and Hui 4, the other in Hui 2. Besides PPR618, three new candidate restoring genes were identified. The homologous genes from restorers was also found to have relations with the restoring genes for CMS system of radish and petunia. Semi-quantitative RT-PCR results showed that the candidate restoring gene expressed in all tested organs. The gene expression gradually increased along with the developmental process from vegetative to reproductive stages, peaked in the bud of 1.5–2.5 mm in diameter, and slumped in roots and stems. In contrast, the highest expression of homologous gene in male sterile line was detected in stems.

Key words: Nsa CMS, Restorer gene, Homologous sequence, Expression

[1]Hu Q, Andersen S B, Dixelias C, Hansen L N. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep, 2002, 21: 147–152

[2]Hu Q(胡琼), Li Y-C(李云昌), Mei D-S(梅德圣), Fang X-P(方小平), Hansen L N, Andersen S B. Establishment and identification of cytoplasmic male sterility in brassica napus by intergeneric somatic hybridization. Sci Agric Sin (中国农业科学), 2004, 37(3): 333–338 (in Chinese with English abstract)

[3]Wei W H, Li Y C, Wang L J, Liu S Y, Yan X H, Mei D S, Li Y D, Xu Y S, Peng P F, Hu Q. Development of a novol Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theor Appl Genet, 2010, 120: 1089–1097

[4]Cui X Q, Wise R P, Schnable P S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 1996, 272: 1334–1336

[5]Bentolila S, Hanson M R. Identification of a BIBAC clone that co-segregates with the petunia Restorer of fertility (Rf) gene. Mol Gen Genet, 2001, 266: 223–230

[6]Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J F, Cheung W Y, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J, 2003, 35: 262–272

[7]Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell, 2008, 20: 3331–3345

[8]Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L). Plant J, 2004, 37: 315–325

[9]Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108: 1449–1457

[10]Jordan D R, Mace E S, Henzell R G, Klein P E, Klein R R. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet, 2010, 120: 1279–1287

[11]Small I D, Peeters N. TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci, 2000, 25: 46–47

[12]Hao J-Y(郝建轶). Identification of Fertility Restorer Gene for Nsa CMS. MS Thesis of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)

[13]Saghai-Maroof M A, Soliman K M, Jorgenson R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018

[14]Schmitz-Linneweber C, Small I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci, 2008, 13: 663–670

[15]Wang F, Stewart J M, Zhang J F. Molecular markers linked to Rf2 fertility restorer gene in cotton. Genome, 2007, 50: 818–824

[16]Jordan D R, Mace E S, Henzell R G, Klein P E,Klein R R. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet, 2010, 120: 1279–1287

[17]Zhang C(张萃), Wang H-Y(王宏英), Shen Y-Z(沈银柱), Zhao B-C(赵宝存), Zhu Z-G(朱正歌), Huang Z-J(黄占景). Location of the fertility restorer gene for T-type CMS wheat by mocrosatellite marker. Acta Genet Sin (遗传学报), 2003, 30(5): 459–464 (in Chinese with English abstract)

[18]Wang W-M(王巍敏). Molecular Identification of Nsa Cytoplasm in Brassica napus L. MS Thesis of Chinese Academy of Agricultural Sciences, 2008 (in Chinese with English abstract)

[19]Wang Z H, Zou Y J, Li X Y, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18: 676–687

[20]Krishnasamy S, Makaroff C A. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol Biol, 1994, 26: 935–946

[21]Bentolila S, Alfonso A A, Hanson M R.A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic malesterile plants. Proc Natl Acad Sci USA, 2002, 99: 10887–10892

[22]Xiang R-Y(向瑞勇). Cytological Study of Nsa, a Novel Cytoplasmic Male Sterile Line in Rapeseed (Brassica napus L.). MS Thesis of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[9] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[10] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[11] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[15] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!