作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2015-2023.doi: 10.3724/SP.J.1006.2012.02015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1 浙江师范大学化学与生命科学学院, 浙江金华 321000; 2 浙江农业科学院作物与核技术利用研究所, 浙江杭州 310021; 3 陕西省杂交油菜研究中心, 陕西大荔 715105
  • 收稿日期:2012-02-11 修回日期:2012-04-16 出版日期:2012-11-12 网络出版日期:2012-05-11
  • 通讯作者: 赵坚义, E-mail: jyzhao3@yahoo.com, Tel: 0571-86403406
  • 基金资助:


Inheritance of Sterility in Genic Male Sterile Line (20118A) and Marker-Assisted Selection in Hybrid Breeding of Brassica napus L.

REN Meng-Yang1,2,NI Xi-Yuan2,WANG Hao3,CHEN Fei2,TIAN Jian-Hua3,HUANG Ji-Xiang2,LI Dian-Rong3,ZHAO Jian-Yi2,*   

  1. 1 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, China; 2 Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 3 Hybrid Rapeseed Research Center of Shaanxi Province, Dali 715105, China
  • Received:2012-02-11 Revised:2012-04-16 Published:2012-11-12 Published online:2012-05-11
  • Contact: 赵坚义, E-mail: jyzhao3@yahoo.com, Tel: 0571-86403406


以20118A不育系和临保系与22个油菜品种(系)杂交测交后代为材料, 采用经典遗传学和分子标记辅助选择方法, 验证该不育系统遗传控制体系及等位基因分布频率; 探索利用连锁共显性标记筛选两型系和临保系基因型的高效性和准确率。研究表明, 6个品种(系)与20118A测交产生的F2世代, 所有组合可育株∶不育株均符合3∶1或13∶3分离规律, 而与20118A-TAM杂交产生的6个F2中1个呈13∶3分离, 其余均为全可育, 育性符合1对隐性不育基因和1对隐性上位抑制基因互作控制的遗传模式; 进而采取反向验证方法, 从1 059个F2分离单株中, 用新发展的Bnms3/Bnrf连锁共显性标记跟踪选择, 直接获得临保系(ms3ms3rfrf)、纯合不育株(ms3ms3RfRf)和两型系可育株(Ms3ms3RfRf) 70、69和135株, 经测交或互交验证, 准确率均达95%以上; 根据20个测交品种的后代分离, BnRf位点上只出现Rfrf两个等位基因, 推测第3个等位基因存在的频率很低, 基本可以根据两基因各2等位基因互作原理开展分子标记辅助育种。

关键词: 甘蓝型油菜, 隐性上位核不育, 分子标记辅助选育, 两型系, 临保系


In the present study, twenty varieties/lines of Brassica napus were test-crossed with sterile lines 20118A, and its temporary maintainer 20118A-TAM. Both traditional genetic analysis and molecular marker assisted technology were employed to confirm their genetic model of sterility with two gene control system, to check the allelic distributions among normal rapeseed varieties or lines. Furthermore, the efficiency and accuracy of marker-assisted selection (MAS) for two-type line and temporary maintainers based on co-dominant markers were also investigated. The results showed that the segregation proportion of male fertile to sterile plants in F2 progenies from six varieties (lines) crossed with 20118A fitted mendelian segregation (3:1 and 13:3), and that with 20118A-TAM showed either 13:3 or full male fertile, indicating that the sterility of 20118Ais controlled by one recessive sterile gene interacting with a recessive epistatic suppression gene. In addition, a reverse validation approach based on Bnms3 and Bnrf linked marker assisted selection was used to further confirm the two gene control system. From a total of 1059 F2 plants, 70, 69 and 135 individuals carrying temporary maintainer(ms3ms3rfrf), homozygous sterile (ms3ms3RfRf) and fertile (Ms3ms3RfRf) marker genotypes were screened out, respectively, which also fitted the Mendelian segregation proportions of two gene model (1/16, 1/16, and 1/8). After test-crossing with known homozygous sterile plants or temporary maintainers or one another among marker genotypes, higher than 95% of lines were approved to be the expected genotypes. Finally, according to the information from 20 testcross cultivars/lines, only two alleles of Rf and rf were observed in BnRf locus, implying the third allele naturally existed very few, if any. Therefore, for practical breeding purpose, a marker assisted selection strategy simply based on BnRf/rf and BnMs3/ms3linked co-dominant markers is proposed.

Key words: Brassica napus L., Recessive genic male sterility, Molecular marker assisted selection, Two-type line, Temporary maintainer

[1]Chen F-X(陈凤祥), Hu B-C(胡宝成), Li Q-S(李强生), Zhang M-L(张曼琳). Discovery and initial study of genic male sterility material 9012A in Brassica napus L. J Beijing Agric Univ (北京农业大学学报), 1993, 19(suppl): 57–61 (in Chinese with English abstract)

[2]Chen F-X(陈凤祥), Hu B-C(胡宝成), Li-C(李成), Li Q-S(李强生), Chen W-S(陈维生), Zhang M-L(张曼琳). Genetic studies on GMS in Brassica napus L.: I. Inheritance of recessive GMS line 9012A. Acta Agron Sin (作物学报), 1998, 24(4): 431–438 (in Chinese with English abstract)

[3]Sun C-C(孙超才), Zhao H(赵华), Wang W-R(王伟荣), Li Y-L(李延莉), Qian X-F(钱小芳), Fang G-H(方光华). Inheritance and utilization of recessive genic male sterile line 20118A in Brassica napus L. Chin J Oil Crop Sci (中国油料作物学报), 2002, 24(4): 1–4 (in Chinese with English abstract)

[4]Wang J(王军), Zhang T-P(张太平), Wei Z-F(魏忠芬), Li D-W(李德文). Inheritance and utilization of recessive genic male sterile line ZWA in Brassica napus L. Seed (种子), 2004, 23(5): 8–11(in Chinese with English abstract)

[5]Xu X-D(徐小栋). Molecular Mapping of Sterile Genes Involved in Recessive Epistatic Genic Male Sterile System in Brassica rapa L. MS Dissertation of Zhejiang Normal University, 2010. pp 1–55 (in Chinese with English abstract)

[6]Zhao J Y, Huang J X, Chen F, Xu F, Ni X Y, Xu H M, Wang Y L, Jiang C C, Wang H, Xu A X, Huang R Z, Li D R, Meng J L. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet, 2012, 124: 407–421

[7]Ni X Y, Xu X D, Ren M Y, Xu F, Huang J X, Chen F, Zhou, Zhao J Y. Fine mapping and candidate gene identification of a recessive genic male sterility gene (Bnms3) in rapeseed. Poc.13th International Rapeseed Congress, Prague, 2011. pp 632–635

[8]Zu F(俎锋), Xia S-Q(夏胜前), Dun X-L(顿小玲), Zeng F-Q(曾芳琴), Yi B(易斌), Wen J(文静), Ma Z-Z(马朝芝), Shen J-X(沈金雄), Tu J-X(涂金星), Fu T-D(傅廷栋). Analysis of genetic model for a recessive genic male sterile line 7-7365AB in Brassica napus L. based on molecular markers. Sci Agric Sin (中国农业科学), 2010, 43(15) : 3067–3075 (in Chinese with English abstract)

[9]Dong F-M(董发明), Hong D-F(洪登峰), Liu P-W(刘平武), Xie Y-Z(谢彦周), He Q-B(何庆彪), Yang G-S(杨光圣). A novel genetic model for recessive genic male sterility line 9012AB in rapeseed (Brassica napus L.). J Huazhong Agric Univ (华中农业大学学报), 2010, 29(3): 262–267 (in Chinese with English abstract)

[10]Ni X-Y(倪西源), Xu X-D(徐小栋), Huang J-X(黄吉祥), Chen F(陈飞), Zhou W-J(周伟军), Zhao J-Y(赵坚义). Marker assisted selection for temporary maintainers of a recessive epistemic genic male sterility in Brassica napus L. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报•农业与生命科学版), 2011, 37(4): 407–412 (in Chinese with English abstract)

[11]Wang G-C(王贵春). Development of Molecular Markers Linked to Sterility Genes of a Recessive Genic Male Sterile Two-Type Line 9012AB in Brassica rapa L. PhD Dissertation of Huazhong Agricultural University, 2007. pp 1–90 (in Chinese with English abstract)

[12]Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed, 2005, 124: 367–370

[13]Xie Y Z, Hong D F, Xu Z H, Liu P W, Yang G S. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed, 2008, 127: 145–149

[14]Xiao L, Yi B, Chen Y F, Huang Z, Chen Wei, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica, 2008, 164: 377–384

[15]Huang Z, Chen Y F, Yi B, Xiao L, Ma C Z, Tu J X, Fu T D. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet , 2007, 115: 113–118

[16]He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP and Arabidopsis derived PCR markers. Theor Appl Genet, 2008, 117: 11–18

[17]Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J, 2011, 68: 532–545

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Full text



No Suggested Reading articles found!