作物学报 ›› 2013, Vol. 39 ›› Issue (03): 440-448.doi: 10.3724/SP.J.1006.2013.00440
余舜武1,张利达2,刘国兰1,罗利军1,*
YU Shun-Wu1,ZHANG Li-Da2,LIU Guo-Lan1,LUO Li-Jun1,*
摘要:
为了应对不良的外界环境,植物形成了一整套复杂的信号网络体系以适应变化的外界环境。其中MAPK级联是其中一个重要而保守的信号传导系统。采用RT-PCR策略,从干旱处理的油菜cDNA中克隆出全长的细胞分裂原激活的蛋白激酶基因。该基因命名为BnMPK9(GenBank登录号为AY737714),包含一个蛋白激酶区和一个保守的CD区。该基因与拟南芥AtMPK9高度同源,其激酶的磷酸化位点为TDY,同为D型MAPK亚家族基因。Southern杂交结果表明该基因在油菜基因组中拷贝数不少于2个。Northern杂交结果显示该基因能在不同的植物组织中表达。其表达受到甘露醇、紫外线和双氧水诱导上调表达,但低温和水杨酸处理后下调表达。实时RT-PCR分析表明甘露醇和双氧水能长时间诱导该基因高表达。在根中,甘露醇也能促进其上调表达。BnMPK9连接到pYES2.1酵母表达载体中转化酵母,发现增强了酵母对600 mmol L–1甘露醇和0.2 mmol L-1 tBuOOH的抗性。以上结果说明BnMPK9是MAPK基因家族中的一员,涉及真核生物细胞渗透和活性氧胁迫,并增强其抗性。
[1]Ichimura K, Tena G, Henry Y, Zhang Z, Hirt H, Wilson C, Morris P, Mundy J, Innes R, Ecker J, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi J, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301–308[2]Jonak C, Ökrész L, Bögre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opinion Plant Biol, 2002, 5: 415–424[3]Yu S W, Tang K X. MAP Kinase cascades responding to environmental stress in plants. Acta Bot Sin, 2004, 46: 127–136[4]Zhang S, Klessig D F. MAPK cascades in plant defense signaling. Trends Plant Sci, 2001, 6: 520–527[5]Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977–983[6]Moustafa K, Vos D, Leprince A, Savouré A, Laurière C. Analysis of the Arabidopsis mitogen-activated protein kinase families: organ specificity and transcriptional regulation upon water stresses. Scholarly Res Exchange, 2008, doi:10.3814/2008/143656[7]Lian W, Tang Y, Gao S, Zhang Z, Zhao X, Zhao P. Phylogenetic analysis and expression patterns of the MAPK gene family in wheat (Triticum aestivum L.). J Integr Agric, 2012, 11: 1227–1235[8]Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis B E, Murata Y, Kwak J M. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 2009, 106: 20520–20525[9]Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961–1972[10]Ge T-M(葛台明), Yu Y-J(余毓君). Research of nutrient demand about wheat regeneration during tissue culture. J Huazhong Agric Univ (华中农业大学学报), 1994, 13(4): 344–348 (in Chinese with English abstract)[11]Jiang C-J(江昌俊), Chen Y(陈彦). A method of isolating genomic DNA from Brassica. Chin J Oil Crop Sci (中国油料作物学报), 1995, 17(4): 34–36 (in Chinese with English abstract)[12]Dóczi R, Okrész L, Romero A E, Paccanaro A, Bögre L. Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci, 2012, http://dx.doi.org/10.1016/j.tplants.2012.05.009[13]Jammes F, Yang X, Xiao S, Kwak J M. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav, 2011, 6: 1875–1877[14]Singh R, Lee MO, Lee J E, Choi J H, Park J H, Yoo R H, Cho J I, Jeon J S, Rakwal R, Agrawal G K, Moon J S, Jwa N S. Rice MAPK interactome analysis using yeast two-hybrid system. Plant Physiol, 2012, DOI: 10.1104/pp.112.200071[15]O’Rourke S M, Herskowitz I, O’Shea E K. Yeast go the whole HOG for the hyperosmotic response. Trends Genet, 2002, 18: 405–412 [16]Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inzé D. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide. J Biol Chem, 1995, 270: 26224–26231[17]Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett, 2000, 482: 19–24[18]Quintero F J, Garciadeblás B, Rodríguez-Navarro A. The SAL1 gene of Arabidopsis, encoding an enzyme with 3'(2'), 5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell, 1996, 8: 529–537[19]Piao H L, Pih K T, Lim J H, Kang S G, Jin J B, Kim S H, Hwang I. An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol, 1999, 119: 1527–1534[20]Yu S, Zhang L, Zuo K, Tang D, Tang K. Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Plant Sci, 2005, 169: 413–421 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[10] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[11] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[14] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[15] | 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903. |
|