欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 440-448.doi: 10.3724/SP.J.1006.2013.00440

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

分离和鉴定油菜D型MAP激酶基因BnMPK9

余舜武1,张利达2,刘国兰1,罗利军1,*   

  1. 1 上海市农业生物基因中心,上海 201106; 2 上海交通大学农业与生物学院,上海 200240
  • 收稿日期:2012-07-26 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2012-12-11
  • 通讯作者: 罗利军, E-mail: lijun@sagc.org.cn, Tel: 021-52230526
  • 基金资助:

    本研究由上海市自然科学基金项目(12ZR1427700), 国家科技重大专项课题项目(2011ZX08001-003)和上海市启明星计划(11QA1405900)资助。

Isolation and Characterization of a Rape MAP Kinase BnMPK9 from Group D

YU Shun-Wu1,ZHANG Li-Da2,LIU Guo-Lan1,LUO Li-Jun1,*   

  1. 1 Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; 2 Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2012-07-26 Revised:2012-11-16 Published:2013-03-12 Published online:2012-12-11
  • Contact: 罗利军, E-mail: lijun@sagc.org.cn, Tel: 021-52230526

摘要:

为了应对不良的外界环境,植物形成了一整套复杂的信号网络体系以适应变化的外界环境。其中MAPK级联是其中一个重要而保守的信号传导系统。采用RT-PCR策略,从干旱处理的油菜cDNA中克隆出全长的细胞分裂原激活的蛋白激酶基因。该基因命名为BnMPK9(GenBank登录号为AY737714),包含一个蛋白激酶区和一个保守的CD区。该基因与拟南芥AtMPK9高度同源,其激酶的磷酸化位点为TDY,同为DMAPK亚家族基因。Southern杂交结果表明该基因在油菜基因组中拷贝数不少于2个。Northern杂交结果显示该基因能在不同的植物组织中表达。其表达受到甘露醇、紫外线和双氧水诱导上调表达,但低温和水杨酸处理后下调表达。实时RT-PCR分析表明甘露醇和双氧水能长时间诱导该基因高表达。在根中,甘露醇也能促进其上调表达。BnMPK9连接到pYES2.1酵母表达载体中转化酵母,发现增强了酵母对600 mmol L–1甘露醇和0.2 mmol L-1 tBuOOH的抗性。以上结果说明BnMPK9MAPK基因家族中的一员,涉及真核生物细胞渗透和活性氧胁迫,并增强其抗性。

关键词: BnMPK9, 油菜, 非生物胁迫, 酵母表达

Abstract:

Under environmental stresses, plant has developed complex signaling networks to respond environmental signals and adapt to unfavorable conditions. Mitogen-activated protein kinase (MAPK) signaling pathways are one of the most important and conserved system to control cellular response and growth. A gene encoding Mitogen-activated protein kinase was isolated from oilseed rape (Brassica napus) treated with drought based on RT-PCR, designated as BnMPK9 (GenBank accession number AY737714). The cloned gene contains a Pkinase domain and a conserved CD domain. BnMPK9 is highly homologous to AtMPK9 gene from Arabidopsis thaliana and belongs to the D-Subgroup of mitogen-activated protein kinase with phosphorylation motif (TDY). Southern bolt analysis revealed that there were at least two copies in rape genome. Northern bolt analyses showed that BnMPK9 could express in different tissues. The expression level of BnMPK9 transcript was up-regulated by mannitol, UV, and H2O2,but down-regulated by low temperature and salicylic acid (SA). Through Real-time RT-PCR, mannitol and H2O2 treatments could induce its high expression under different time. In root, mannitol treatment could enhance its expression. BnMPK9 was ligated into pYES2.1 and transformed into yeasts, and BnMPK9s expression enhanced yeasts’ resistance to mannitol and peroxide in 600 m mol L–1 mannitol and 0.2 mmol L–1 tBuOOH drug assays. The present studies show that BnMPK9 is a member of MAPK family involved in eukaryotic responses and resistance to osmotic and ROS stresses.

Key words: BnMPK9, Brassica napus, Abiotic stress, Yeast expression

[1]Ichimura K, Tena G, Henry Y, Zhang Z, Hirt H, Wilson C, Morris P, Mundy J, Innes R, Ecker J, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi J, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301–308



[2]Jonak C, Ökrész L, Bögre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opinion Plant Biol, 2002, 5: 415–424



[3]Yu S W, Tang K X. MAP Kinase cascades responding to environmental stress in plants. Acta Bot Sin, 2004, 46: 127–136



[4]Zhang S, Klessig D F. MAPK cascades in plant defense signaling. Trends Plant Sci, 2001, 6: 520–527



[5]Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977–983



[6]Moustafa K, Vos D, Leprince A, Savouré A, Laurière C. Analysis of the Arabidopsis mitogen-activated protein kinase families: organ specificity and transcriptional regulation upon water stresses. Scholarly Res Exchange, 2008, doi:10.3814/2008/143656



[7]Lian W, Tang Y, Gao S, Zhang Z, Zhao X, Zhao P. Phylogenetic analysis and expression patterns of the MAPK gene family in wheat (Triticum aestivum L.). J Integr Agric, 2012, 11: 1227–1235



[8]Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis B E, Murata Y, Kwak J M. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 2009, 106: 20520–20525



[9]Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961–1972



[10]Ge T-M(葛台明), Yu Y-J(余毓君). Research of nutrient demand about wheat regeneration during tissue culture. J Huazhong Agric Univ (华中农业大学学报), 1994, 13(4): 344–348 (in Chinese with English abstract)



[11]Jiang C-J(江昌俊), Chen Y(陈彦). A method of isolating genomic DNA from Brassica. Chin J Oil Crop Sci (中国油料作物学报), 1995, 17(4): 34–36 (in Chinese with English abstract)



[12]Dóczi R, Okrész L, Romero A E, Paccanaro A, Bögre L. Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci, 2012, http://dx.doi.org/10.1016/j.tplants.2012.05.009



[13]Jammes F, Yang X, Xiao S, Kwak J M. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav, 2011, 6: 1875–1877



[14]Singh R, Lee MO, Lee J E, Choi J H, Park J H, Yoo R H, Cho J I, Jeon J S, Rakwal R, Agrawal G K, Moon J S, Jwa N S. Rice MAPK interactome analysis using yeast two-hybrid system. Plant Physiol, 2012, DOI: 10.1104/pp.112.200071



[15]O’Rourke S M, Herskowitz I, O’Shea E K. Yeast go the whole HOG for the hyperosmotic response. Trends Genet, 2002, 18: 405–412



[16]Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inzé D. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide. J Biol Chem, 1995, 270: 26224–26231



[17]Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett, 2000, 482: 19–24



[18]Quintero F J, Garciadeblás B, Rodríguez-Navarro A. The SAL1 gene of Arabidopsis, encoding an enzyme with 3'(2'), 5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell, 1996, 8: 529–537



[19]Piao H L, Pih K T, Lim J H, Kang S G, Jin J B, Kim S H, Hwang I. An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol, 1999, 119: 1527–1534



[20]Yu S, Zhang L, Zuo K, Tang D, Tang K. Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Plant Sci, 2005, 169: 413–421

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!