欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 673-681.doi: 10.3724/SP.J.1006.2013.00673

• 耕作栽培·生理生化 • 上一篇    下一篇

麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响

董明辉1,2,陈培峰1,顾俊荣1,乔中英1,黄萌1,朱赟德2,赵步洪3   

  1. 1 苏州市农业科学院, 江苏苏州215155; 2 扬州大学江苏省作物遗传生理国家重点实验室培育基地, 江苏扬州225009; 3 江苏里下河地区农业科学研究所, 江苏扬州 225009
  • 收稿日期:2012-08-09 修回日期:2012-11-16 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 基金资助:

    本研究由国家自然科学基金项目(31171490), 江苏省自然科学基金项目(BK2011269), 江苏省农业三新工程项目[SX(2011)398, SX(2012)101]和江苏省“333高层次人才培养工程”项目资助。

Effects of Wheat Straw-Residue Applied to Field and Nitrogen Management on Photosynthate Transportation of Stem and Sheath and Grain-Filling Characteristics in Super Hybrid Rice

DONG Ming-Hui1,2,CHEN Pei-Feng1,GU Jun-Rong1,QIAO Zhong-Ying1,HUANG Meng1,ZHU Bin-De2,ZHAO Bu-Hong3   

  1. 1 Suzhou City Academic of Agriculture sciences, Suzhou 215155, China; 2 Fostering Base for the National Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 3 Lixiahe Region Agricultural Research Institute of Jiangsu, Yangzhou 225007, China?
  • Received:2012-08-09 Revised:2012-11-16 Published:2013-04-12 Published online:2013-01-28

摘要:

为探究不同栽培条件和耕作方式对大穗型超级稻籽粒灌浆结实的影响及不同粒位籽粒间差异,寻求超级稻高产优质栽培调控途径。以超级杂交籼稻扬两优6号和II084为材料,设置麦秸还田和氮肥运筹两因素试验,研究其对茎鞘光合同化物生产、运转及强、弱势粒灌浆特性影响。结果表明,抽穗前麦秸不还田处理(A1)的叶片SPAD值和茎鞘干物质积累量大于麦秸还田处理(A2),抽穗期以后则相反;抽穗前,基蘖肥穗肥=73 (B2)的处理叶片SPAD值高于基蘖肥穗肥=55 (B1)处理,生育各期茎鞘物质积累量与运转率均为B2大于B1,但干物质积累量抽穗期前差异不大,抽穗与成熟期呈显著与极显著差异;A2B2互作显著提高生育中后期茎鞘干物质积累量、茎鞘物质输出率与运转率及非结构性碳水化合物(NSC)运转率;强、弱势粒粒重与抽穗至成熟期干物质积累量、抽穗期茎鞘NSC积累量、成熟期干物质量均呈显著正相关,与成熟期NSC积累量呈显著负相关;强、弱势粒的起始灌浆势与抽穗期NSC含量均呈极显著正相关,平均灌浆速率与抽穗期NSC含量及运转率呈显著正相关,强势粒的最大灌浆速率与抽穗期NSC含量及NSC运转率呈显著正相关,弱势粒的最大灌浆速率与NSC运转率呈显著正相关。

关键词: 氮肥运筹, 麦秸还田, 超级杂交稻, 光合同化物积累与运转, 籽粒灌浆特性

Abstract:

Grain filling is the final growth stage in cereals when fertilized ovaries develop into caryopses. The degree and rate of grain filling in rice spikelets differ largely with grain positions on a panicle and photosynthate accumulated in the stem sheath before and after flowering. A rice panicle is usually divided into inferior spikelets and superior spikelets, the poor grain-filling of inferior spikelets is more aggravated in the new bred “super” rice cultivars that have numerous spikelets on a panicle. In order to further investigate the mechanism, and the cultivation measures to improve the yield potential of “super” rice cultivars, two “super” hybrid indica rice cultivars, Yangliangyou 6 and II you 084, were field-grown with treatments of two applications of wheat straw (all wheat strawresidue applied to field, SRF; no wheat strawresidue applied to field, NSRF) and two applications of nitrogen (the basic and tiller fertilizer to the panicle fertilizer=5:5, N1; and 7:3, N2). The accumulations of dry matter and NSC (non-structural carbohydrates) in stem and sheath, transportation percentage, and grain-filling characteristic in superior and inferior spikelets under nitrogen application amount of 225 kg ha-1 were measured. The results showed that the SPAD values of leaves and dry matter accumulation of stem and sheath in treatment of NSRF were higher than those in SRF before heading, which was on the contrary after heading. The SPAD values of the N2 were higher than those of the N1 before heading, but the dry matter accumulation of stem and sheath and its transportation percentage of the N2 were higher than those of the N1 at each growth stage, there was no significant difference before heading, while significant diffrence at heading and ripening periods. The interactions of the SFR and the N2 significantly enhanced dry matter accumulation in stem and sheath, output from stem and sheath, transportation percentage and NSC transportation percentage at mid and late grain-filling stages. Grain weight of the superior or inferior spikelets was positively and significantly or very significantly correlated with dry matter accumulation from heading to ripening, NSC accumulation in stem and sheath at heading, and dry matter weight in stem and sheath at ripening, while negatively and significantly correlated with NSC accumulation at ripening. The positive corrections between the initial growth power of the superior or inferior grains and the NSC accumulation of stems and sheath at heading, between the mean grain-filling rate and the NSC accumulation of stems and NSC transportation percentage at heading stage, between the maximum grain-filling rate of the superior grains and NSC accumulation and NSC translocation efficiency at heading, and between the maximum grain-filling rate of the inferior grains and the NSC transportation percentage were significant or very significant.

Key words: Nitrogen application, Wheat straw residue to field, super hybrid rice, photosynthate accumulation and transportation, grain filling characteristic

[1]Yang J-C(杨建昌). Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin (作物学报). 2010, 36(12): 2011−2019 (in Chinese with English abstract)



[2]Zhang Z-X(张志兴), Chen J(陈军), Li Z(李忠), Li Z-W(李兆伟), Huang J-W(黄锦文), Chen T(陈婷), Fang C-X(方长旬), Chen H-F(陈鸿飞), Lin W-X(林文雄). Protein expression characteristics and their response to nitrogen application during grain-filling stage of rice (Oryza sativa L). Acta Ecol Sin (生态学报), 2012, 32(10): 3209–3224 (in Chinese with English abstract)



[3]Dong M-H(董明辉), Xie Y-L(谢裕林), Qiao Z-Y(乔中英), Liu X-B(刘晓斌),Wu X-Z(吴翔宙), Zhao B-H(赵步洪),Yang J-C(杨建昌). Variation in carbohydrate and protein accumulation between spikelets at different positions within a rice panicle during grain filling. Chin J Rice Sci (中国水稻科学), 2011, 25(3): 297–306 (in Chinese with English abstract)



[4]Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2000, 30: 261–270



[5]Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol, 1993, 20: 231–242



[6]Wu W-G(吴文革), Zhang H-C(张洪程), Wu G-C(吴桂成), Zhai C-Q(翟超群), Qian Y-F(钱银飞), Chen Y(陈烨), Xu J(徐军), Dai Q-G(戴其根), Xu K(许珂). Preliminary Study on Super Rice Population Sink Characters. Sci Agric Sin (中国农业科学), 2007, 40(2): 250–257 (in Chinese with English abstract)



[7]Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149–160



[8]Wang Y-L(王余龙), Yamamoto Y(山本由德), Yao Y-L(姚友礼), Xu J-K(徐家宽), Bian Y(卞悦), Jiang J-M(蒋军民), Nitta Y(新田洋司), Li T-Y(李昙云), Cai J-Z(蔡建中). Effect of cultural conditions on grain weight and its causes in rice. Acta Agron Sin (作物学报), 1998, 24(3): 280–290 (in Chinese with English abstract)



[9]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth analysis on the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(6): 182-193 (in Chinese with English abstract)



[10]Yang J, Zhang J. Grain filling problem in “super” rice. J Exp Bot, 2010, 61: 1–5



[11]Dong M-H(董明辉), Sang D-Z(桑大志), Wang P(王朋), Zhang W-J(张文杰), Yang J-C(杨建昌). Difference in chalky characters of the grains at different positions within a rice panicle. Acta Agron Sin (作物学报), 1988, 14(3): 183–193 (in Chinese with English abstract)



[12]Murty P S S, Murty K S. Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Indian J Plant Physiol, 1982, 25: 40–48



[13]Xue Y-G(薛亚光), Chen T-T(陈婷婷), Yang C(杨成), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effects of different cultivation patterns on the yield and physiological characteristics in mid-season japonica rice. Acta Agron Sin (作物学报), 2010, 36(3): 466–476 (in Chinese with English abstract)



[14]Ren W-J(任万军), Yang W-Y(杨文钰), Fan G-Q(樊高琼), Chen D-C(陈德春), Wu J-X(吴锦秀). Effect of different tillage and transplanting methods on soil fertility and root growth of rice. J Soil Water Conserv (水土保持学报), 2007,21(2): 108–110 (in Chinese with English abstract)



[15]Xu G-W(徐国伟), Tan G-L(谈桂露), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effects of wheat-residue application and site-specific nitrogen management on grain yield and quality and nitrogen use efficiency in direct-seeding rice. Sci Agric Sin (中国农业科学), 2009, 42(8): 2736–2746 (in Chinese with English abstract)



[16]Ren W-J(任万军), Wu J-X(伍菊仙), Lu T-Q(卢庭启), Wu J-X(吴锦秀), Yang W-Y(杨文钰), Peng H(彭虎). Effects of nitrogen strategies on dry matter accumulation, transformation and distribution of broadcasted rice among high standing-stubbles under no-tillage condition. J Sichuan Agric Univ (四川农业大学学报), 2009, 27(2): 162–166 (in Chinese with English abstract)



[17]Liu S-P(刘世平), Nie X-T(聂新涛), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲). Effects of Interplanting with zero tillage and wheat straw manuring on rice growth and grain quality. Chin J Rice Sci (中国水稻科学), 2007, 21(1): 71–76 (in Chinese with English abstract)



[18]Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol, 1993, 20: 231–242



[19]Kato T. Effect of spikelet removal on the grain filling of Akenohoshi, a rice cultivar with numerous spikelets in a panicle. J Agric Sci, 2004, 142: 177–181



[20]Venkateswarlu B, Maddulety P Y. Changing in source-sink relationships in rice (Oryza sativa L.) through different canopy profiles under field conditions. Plant Physiol, 1976, 19: 194–201



[21]Liu J-F(刘建丰), Yuan L-P(袁隆平), Deng Q-Y(邓启云), Chen L-Y(陈立云), Cai Y-D(蔡义东). A study on characteristics of photosynthesis in super high-yielding hybrid rice. Sci Agric Sin (中国农业科学), 2005, 38(2): 258–264 (in Chinese with English abstract)



[22]Yang H-J(杨惠杰), Li Y-Z(李义珍), Yang R-C(杨仁崔), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Dry Matter production characteristics of super high yielding rice. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 265–270 (in Chinese with English abstract)



[23]Zhai H-Q(翟虎渠), Cao S-Q(曹树青), Wan J-M(万建民), Lu W(陆巍), Zhang R-X(张荣铣), Li L-B(李良璧), Kuang T-Y(匡廷云), Min S-K(闵绍楷), Zhu D-F(朱德峰), Cheng S-H(程式华). The relationship between photosynthetic function at filling stage and yield of super-high-yield hybrid rice. Sci China (Ser C) (中国科学 C辑), 2002, 32(3): 211–218 (in Chinese)



[24]Horie T, Shiraiwa T, Homma K, Katsura K, Maeda S, Yoshida H. Can yields of low land rice resume the increases that showed in the 1980s? Plant Prod Sci, 2005, 8: 259–274



[25]Yang J, Zhang J. Grain filling of cereals under soil drying.New Phytol, 2006, 169: 223–236

[1] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[2] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382.
[3] 徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性[J]. 作物学报, 2021, 47(3): 566-574.
[4] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性[J]. 作物学报, 2021, 47(1): 149-158.
[5] 陈梦云,李晓峰,程金秋,任红茹,梁健,张洪程,霍中洋. 秸秆全量还田与氮肥运筹对机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(12): 1802-1816.
[6] 李晓峰,程金秋,梁健,陈梦云,任红茹,张洪程,霍中洋*,戴其根,许轲,魏海燕,郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响[J]. 作物学报, 2017, 43(06): 912-924.
[7] 胡群,夏敏,张洪程,曹利强,郭保卫,魏海燕,陈厚存,韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(03): 420-431.
[8] 胡群,夏敏,张洪程,曹利强,郭保卫,魏海燕,陈厚存,戴其根,霍中洋,许轲,林昌明,韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及氮素吸收利用的影响[J]. 作物学报, 2016, 42(11): 1666-1676.
[9] 文熙宸,王小春,邓小燕,张群,蒲甜,刘国丹,杨文钰. 玉米-大豆套作模式下氮肥运筹对玉米产量及干物质积累与转运的影响[J]. 作物学报, 2015, 41(03): 448-457.
[10] 武文明,陈洪俭,李金才,魏凤珍,王世济,周向红. 氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响[J]. 作物学报, 2012, 38(06): 1088-1096.
[11] 杨志远,胡蓉,孙永健,徐徽,许远明,马均. 三角形强化栽培模式下氮肥运筹对II优498产量及氮肥利用的影响[J]. 作物学报, 2012, 38(06): 1097-1106.
[12] 杜晓东, 赵宏伟*, 王敬国, 刘化龙, 杨亮, 许晶, 宋谨同. 氮肥运筹对寒地粳稻淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2012, 38(01): 159-167.
[13] 韩自行, 张长生, 王积军, 张冬晓, 汤松, 陈爱武, 周广生, 胡立勇, 吴江生, 傅廷栋. 氮肥运筹对稻茬免耕油菜农艺性状及产量的影响[J]. 作物学报, 2011, 37(12): 2261-2268.
[14] 孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾现文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响[J]. 作物学报, 2011, 37(12): 2221-2232.
[15] 武文明, 李金才, 陈洪俭, 魏凤珍, 王世济. 氮肥运筹方式对孕穗期受渍冬小麦穗部结实特性与产量的影响[J]. 作物学报, 2011, 37(10): 1888-1896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!