欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1377-1385.doi: 10.3724/SP.J.1006.2013.01377

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

山东省和河北省小麦白粉菌毒性与遗传多样性分析

赵紫慧1,2,黄江2,3,陆鸣1,王晓鸣2,吴龙飞2,武小菲2,赵鑫4,李洪杰2,*   

  1. 1 河北科技师范学院生命科技学院, 河北秦皇岛066600; 2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081; 3 桂林医学院生物技术学院, 广西桂林541004; 4 西南大学植物保护学院, 重庆400700
  • 收稿日期:2013-01-07 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 李洪杰, E-mail: lihongjie@caas.cn
  • 基金资助:

    本研究由国家现代农业产业体系建设项目(CARS-3-1),国家重点基础研究计划(973计划)项目(2009CB118300),农业部作物种质资源保护子项目主要作物抗病虫、抗逆和品质性状鉴定评价项目(NB2012-2130135-25-15)资助。

Virulence and Genetic Diversity of Blumeria graminis f. sp. tritici Collected from Shandong and Hebei Provinces

ZHAO Zi-Hui1,3,HUANG Jiang2,3,LU Ming1,WANG Xiao-Ming2,WU Long-Fei2,WU Xiao-Fei2,ZHAO Xin4,LI Hong-Jie2,*   

  1. 1 College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 College of Biotechnology, Guilin Medical University, Guilin 541004, China; 4 College of Plant Protection, Southwest University, Chongqing 400700, China?
  • Received:2013-01-07 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 李洪杰, E-mail: lihongjie@caas.cn

摘要:

Blumeria graminis f. sp. tritici引起的白粉病是危害我国小麦安全生产的重要病害之一。分析菌株毒性结构和抗病基因有效性对于利用寄主控制白粉病具有重要意义。本研究对2011年从山东和河北两省分离的41个菌株进行了毒性分析,并采用SSR标记对其遗传多样性进行了分析。测试菌株的毒性频率在0.35 (Bg40-2,山东烟台)0.74 (Bg46-1,山东平度)之间。山东省菌株的平均毒性频率与河北省菌株没有显著差异。除别菌株外(例如Pm17),山东省和河北省的菌株对大多数抗病基因的毒性差异不大。全部测试菌株对来自地方品种齿牙糙的Pm24基因都没有毒性。极少数菌株对Pm1cPm16Pm20PmHMlxbd的毒性频率低于0.1,在河北省邯郸市和黄骅市发现对Pm21基因具有毒性的菌株,但在山东省没有检测到对Pm21具有毒性的菌株。对Pm5ePm6Pm12Pm13Pm17Pm40Pm2+6Pm5+6的毒性频率在0.18~0.48之间,对Pm1aPm3aPm3cP m3gPm4aPm4bPm5aPm7Pm8Pm19Pm33Pm43PmY39PmPS5APm1+2+9的毒性频率超过0.6。遗传多样性分析可见,小麦白粉菌群体的遗传变异主要发生在群体内部,菌株间具有一定程度的基因交流。同一地点采集的不同单孢分离菌株有些可聚为一类,但有些不能聚为一类,说明其遗传基础可能存在差异。供试菌株对不同抗病基因的毒性多态性与DNA多态性之间不存在一一对应的关系。

关键词: 小麦, 白粉菌, 毒性, 抗病基因, 遗传多样性

Abstract:

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important diseases that damages wheat (Triticum aestivum L.) production in China. Analysis of virulence structure and effectiveness of resistance genes is important in the control of powdery mildew with host resistance. This study was conducted to test virulence structures of 41 isolates collected from Shandong and Hebei provinces in 2011. The genetic diversity of these isolates was also analyzed using SSR markers. The virulence frequencies of isolates tested ranged from 0.35 (Bg40-2, Yantai, Shandong) to 0.74 (Bg46-1, Pingdu, Shandong). The mean virulence frequency for the isolates from Shandong was not significantly different from that of the isolates from Hebei Province. Except for a few resistance genes such as Pm17, the virulence frequencies of isolates from Shandong and Hebei provinces on most resistance genes were not different. None of the isolates tested was virulent on Pm24 carried by the Chinese landrace Chiyacao. A few isolates were virulent to Pm1c, Pm16, Pm20, PmH, and Mlxbd. Two isolates from Handan and Huanghuang of Hebei Province were virulent on Pm21, but none of the isolates from Shandong Province was virulent on Pm21. The virulence frequencies for Pm5e, Pm6, Pm12, Pm13, Pm17, Pm40, Pm2+6, and Pm5+6 ranged from 0.18 to 0.48. Genes Pm1a, Pm3a, Pm3c, Pm3g, Pm4a, Pm4b, Pm4c, Pm5a, Pm7, Pm8, Pm19, Pm33, Pm43, PmY39, PmPS5A, and PmDR147 had the virulence frequencies over 0.6. Analysis of genetic diversity indicated that the genetic variation of Bgt isolates occurred within the population, and gene flow occurred among isolates. Although some single spore progenies from the same location were clustered together, some were not classified into the same cluster, indicating the variation in their genetic bases. The polymorphism of virulence patterns for various resistance genes was not necessarily consistent with the DNA polymorphism as revealed by SSR markers.

Key words: Wheat, Blumeria graminis f. sp. tritici, Virulence, Resistance gene, Genetic diversity

[1]Wolfe M S, Schwarzbach E. Patterns of race changes in powdery mildews. Annu Rev Phytopathol, 1978, 16: 159–180



[2]Svec M, Miklovicova M. Structure of populations of wheat powdery mildew (Erysiphe graminis D. C. f. sp. tritici Marchal) in Central Europe in 1993–1996: I. Dynamics of virulence. Eur J Plant Pathol, 1998, 104: 537–544



[3]Wolfe M S, Schwarzbach E. The use of virulence analysis in cereal mildews. Phytopath Z, 1975, 82: 297–307



[4]Wolfe M S, Barrett J A. Phenotype-phenotype analysis: field application of the gene-for-gene hypothesis in host-pathogen relations. Ann Appl Biol, 1976, 82: 369–374



[5]Heun M. Virulence frequencies influenced by host resistance in the host-pathogen system wheat-powdery mildew. J Phytopathol, 1987, 118: 363–366



[6]Limpert E, Felsenstein F G, Andrivon D. Analysis of virulence in populations of wheat powdery mildew in Europe. J Phytopathol, 1987, 120: 1–8



[7]Li L-Y(李隆业), Hua S-Z(华世贞), Liu Q-H(刘庆华), Shi S-X(石遂兴). A virulence monitoring of wheat powdery mildew in Sichuan (1983–1984). J Southwest Agric Univ (西南农大学报), 1985, (4): 57–63 (in Chinese with English abstract)



[8]Zhu J-X(朱建祥), Ji B-H(季伯衡). An analysis of virulence frequencies of wheat powdery mildew in Anhui province. J Anhui Agric Univ (安徽农学院学报), 1986, (1): 59–68 (in Chinese with English abstract)



[9]Lu M(陆鸣). Virulent frequency and pathogenic potential of Erysiphe graminis f. sp. tritici in Jiangsu province. J Agric Sci (江苏农业学报), 1986, (2): 37–41 (in Chinese)



[10]Sheng B-Q(盛宝钦), Xiang Q-J(向齐君), Duan X-Y(段霞瑜), Zhou Y-L(周益林). Development of wheat powdery mildew physiological races during 1991–1992. Acta Phytopathol Sin (植物病理学报), 1995, 25(2): 116 (in Chinese)



[11]Duan X-Y(段霞瑜), Sheng B-Q(盛宝钦), Zhou Y-L(周益林), Xiang Q-J(向齐君). Monitoring of the virulence population of Erysiphe graminis f. sp. tritici. Acta Phytophyl Sin (植物保护学报), 1998, 25(1): 31–35 (in Chinese with English abstract)



[12]Tang Y-L(唐玉兰), Liu Q-J(刘泉姣), Zhang B-S(张柏松). Identification of physiological races of Blumeria graminis f. sp. tritici from Shandong Province. Shandong Agric Sci (山东农业科学), 1991, (5): 39–41 (in Chinese)



[13]Tang Y-L(唐玉兰), Liu Q-J(刘泉姣), Liu Q-C(刘青春). Analysis of types and virulence genes of Blumeria graminis f. sp. tritici from Shandong Province. Shandong Agric Sci (山东农业科学), 1995, (3): 34–36 (in Chinese)



[14]Guo A-G(郭爱国), Cheng Y-H(程玉河), Yang W-X(杨文香), Zhu Z-Y(朱之堉). Study on effectiveness of genes for resistance to Erysiphe graminis f. sp. tritici in Hebei. J Hebei Agric Univ (河北农业大学学报), 1991, 14(4): 72–75 (in Chinese with English abstract)



[15]Guo A-G(郭爱国), Liu Y-C(刘颖超), Zhang F-G(张风国), Liu G-S(刘国胜), Zhu Z-Y(朱之堉). Analysis of population virulence of Erysiphe graminis f. sp. tritici and resistance of 21 wheat cultivars to powdery mildew in Hebei. J Hebei Agric Univ (河北农业大学学报), 1992, 15(2): 4–7 (in Chinese with English abstract)



[16]Gao S-G(高胜国). A study on virulence genes of wheat Erysiphe graminis f. sp. tritici population in Hebei province. Acta Agric Boreali-Sin (华北农学报), 1997, 12(4): 90–93 (in Chinese with English abstract)



[17]Wu Y-P(武英鹏), Yuan Z-Y(原宗英), Li Y(李颖),Shi B-M(石保明). Study on the validity of resistant genes for wheat powdery mildew in Shanxi. J Triticeae Crops (麦类作物学报), 2009, 29(6): 1105–1109 (in Chinese with English abstract)



[18]Wang L(王龙), Wang S-R(王生荣), Gan L-P(甘丽萍). Group virulence study of Blumeria graminis f. sp. tritici in the middle west of Gansu province. Acta Agric Boreali-Occident Sin (西北农业学报), 2005, 14(1): 106–110 (in Chinese with English abstract)



[19]Shi Y-Q(史亚千), Wang B-T(王保通), Li Q(李强), Wu X-Y(吴兴元), Wang F(王芳), Liu H(刘恒), Tian Y-E(田月娥), Liu Q-R(刘倩茹). Analysis on the virulent genes of Erysiphe graminis f. sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J Triticeae Crops (麦类作物学报), 2009, 29(4): 706–711 (in Chinese with English abstract)



[20]Yang L-J(杨立军), Xiang L-B(向礼波), Zeng F-S(曾凡松), Wang H(汪华), Shi W-Q(史文琦), Yu D-Z(喻大昭). Virulence gene structure analysis of Blumeria graminis f. sp. tritici in Hubei. Plant Prot (植物保护), 2009, 35(5): 76–79 (in Chinese with English abstract)



[21]Li Y-H(李亚红), Cao L-H(曹丽华), Zhou Y-L(周益林), Song Y-L(宋玉立), He W-L(何文兰), Duan X-Y(段霞瑜), Yang G-Q(杨共强). Virulence and genetic diversity analyses of wheat powdery mildew population in Henan Province during 2009–2010. Acta Phytophyl Sin (植物保护学报), 2012, 39(1): 31–38 (in Chinese with English abstract)



[22]Wei S-H(魏松红), Cao Y-Y(曹远银), Mou L-X(牟连晓). Race identification and virulent gene analysis of Blumeria graminis (DC.) Speer f. sp. tritici in northeastern spring wheat zone in China during the period of 1999–2002. Acta Phytophyl Sin (植物保护学报), 2006, 33(1): 333–334 (in Chinese with English abstract)



[23]Chi W-J(迟文娟), Cao Y-Y(曹远银), Zhu G-Q(朱桂清), Zhang X-L(张晓蕾). Analysis on 2004–2005 racial virulence of Blumeria graminis f. sp. tritici in northern China and the resistance in wheat cultivars in the disease epidemic related zones. Acta Phytophyl Sin (植物保护学报), 2007, 34(6): 567–572 (in Chinese with English abstract)



[24]Shao Z-R(邵振润), Liu W-C(刘万才). Current status and management strategy of wheat powdery mildew in China. Chin Agric Sci Bull (中国农学通报), 1996, 12(6): 21–23 (in Chinese)



[25]Sheng B-Q(盛宝钦). Identification powdery mildew of infection type at seedling stage. Plant Protect (植物保护), 1988, 14(1): 49 (in Chinese)



[26]Wang M(王萌). Development of SSR Markers of Blumeria graminis f. sp. tritici and Its Application in Population Genetic Diversity. MS Thesis of China Agricultural University, 2010 (in Chinese with English abstract)



[27]Li H-J(李洪杰), Wang X-M(王晓鸣), Song F-J(宋凤景), Wu C-P(武翠平), Wu X-F(武小菲), Zhang N(张宁), Zhou Y(周阳), Zhang X-Y(张学勇). Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin (作物学报), 2011, 37(6): 943–954 (in Chinese with English abstract)



[28]Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531–535 (in Chinese with English abstract)



[29]Zhuang Q S, Li Z S. Present status of wheat breeding and related genetic study in China. Wheat Inf Serv, 1993, 76: 1–15



[30]Li G P, Chen P D, Zhang S Z, Wang X E, He Z H, Zhang Y, Zhao H, Huang H Y, Zhou X C. Effect of the 6VS•6VL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007, 155: 305–313



[31]Chen Z-X(陈志祥). Study on Population Genetic Structure of Blumeria graminis f. sp. tritici in Sichuan. MS Thesis of Sichuan Agricultural University, 2010 (in Chinese with English abstract)



[32]Wu Y-P(武英鹏), Yuan Z-Y(原宗英), Li Y(李颖), Shi B-M(石保明). Study on the validity of resistant genes for wheat powdery mildew in Shanxi. J Triticeae Crops (麦类作物学报), 2009, 29(6): 1105–1109 (in Chinese with English abstract)



[33]Huang X Q, Hsam S L K, Zeller F J, Wenzel G, Mohler V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet, 2000, 101: 407–414



[34]Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in Chinese wheat (Triticum aestivum L. em. Thell.) landraces Xiaobaidong and Fuzhuang 30. J Genet Breed, 2000, 54: 311–317



[35]Xue F, Zhai W W, Duan X Y, Zhou Y L, Ji W Q. Microsatellite mapping of powdery mildew resistance gene in wheat landrace Xiaobaidong. Acta Agron Sin, 2009, 34: 1193–1198



[36]Zhou R H, Zhu Z D, Kong X Y, Huo N X, Tian Q Z, Li P, Jin C Y, Dong Y C, Jia J Z. Development of wheat near-isogenic lines for powdery mildew resistance. Theor Appl Genet, 2005, 110: 640–648

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!