作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1521-1529.doi: 10.3724/SP.J.1006.2013.01521

• 作物遗传育种·种质资源·分子遗传学 •    下一篇



  1. 1 中国农业科学院作物科学研究所,北京 100081;2 四川农业大学玉米研究所, 四川成都 611130; 3 新疆农业科学院粮食作物研究所,新疆乌鲁木齐830000;4 西南大学农学院,重庆 400716;5 毕节市农业科学研究所, 贵州毕节 551700
  • 收稿日期:2012-12-17 修回日期:2013-04-22 出版日期:2013-09-12 网络出版日期:2013-07-19
  • 通讯作者: 王天宇, E-mail: wangtianyu@263.net, Tel: 010-62186632; 潘光堂, E-mail: pangt@sicau.edu.cn, Tel: 0835-2882714
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100100, 2009CB118401)和国家国际科技合作项目(2011DFA30450)资助。

QTL Mapping for Plant Height and Ear Height by Using Multiple Related RIL Populations in Maize

LI Qing-Chao1,2,LI Yong-Xiang1,YANG Zhao-Zhao1,LIU Cheng3,LIU Zhi-Zhai4,LI Chun-Hui1,PENG Bo1,ZHANG Yan1,WANG Di1,TAN Wei-Wei1,SUN Bao-Cheng3, SHI Yun-Su1, SONG Yan-Chun1, ZHANG Zhi-Ming2, PAN Guang-Tang2, WANG Tian-Yu1, LI Yu1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; 3 Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; 4 Southwest University, Chongqing 400716, China?; 5 Bijie Institute of Agricultural Sciences, Bijie 551700, China
  • Received:2012-12-17 Revised:2013-04-22 Published:2013-09-12 Published online:2013-07-19


株高和穗位高是玉米育种中的重要农艺性状。本研究利用我国玉米育种中骨干亲本黄早四与来自不同杂种优势群的其他11个骨干自交系组配11RIL群体,开展基于单环境、联合环境的QTL分析,分别检测到269个和176QTL。通过区段整合,检测到21个株高主效QTL15个穗位高主效QTL,这些QTL分布在第1、第2、第3、第6、第7、第8、第9、第10染色体上。相对于共同亲本黄早四而言,部分QTL在不同RIL群体中的效应方向一致,来自共同亲本黄早四的等位基因在不同群体中能够稳定地表达。同时,还分别定位到在多环境下稳定表达的5个株高、4个穗位高环境钝感QTL”。此外,进一步鉴定出5个重要的株高和穗位高QTL富集区段(bin 1.01-1.021.08-,这些区段均包含多个株高和穗位高相关QTL,如bin3.05位点包含7QTLbin8.03-8.05位点分别包含9QTL,且这些QTL至少在3个不同环境中能够被检测到,这些区域对QTL的精细定位和克隆有重要参考价值

关键词: 玉米, 株高, 穗位高, RIL, QTL


Plant height and ear height are two important agronomic traits in maize. In this study, 11 RIL populations developed by crossing a common parent (Huangzaosi, a foundation inbred line of maize breeding in China) with other 11 elite inbred lines were applied to QTL mapping for plant height and ear height based on phenotype data of three locations in two years. A total of 269 QTL detected by single- environment analysis and 176 QTL by joint analysis were identified across all of six environments, respectively. Collectively, 21 major-effect QTL for plant height and 15 major effect QTL for ear height were detected, which were located on chromosome. 1, 2, 3, 6, 7, 8, 9, and 10. It was found that the common parent (Huangzaosi) contributed the positive alleles for some QTL across different RIL populations. Five and four environment-insensitive QTL for plant height and ear height were also identified, respectively. Five QTL clustering regions related to plant and ear height, such as bin 1.01–1.03, 1.08–1.11, 3.05–3.06, 8.03–8.05, and 9.07, were dissected, of which each region were covered under more than three environments. These genomic regions would be valuable for fine mapping and cloning of height related QTL in maize.

Key words: Maize, Plant height, Ear height, RIL, QTL

[1]Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450–mediated early step in Gibberellin biosynthesis. Plant Cell, 1995, 7: 1307–1317

[2]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84

[3]Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D A, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405–416

[4]Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet, 2006, 113: 206–224

[5]Saghai–Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470

[6]Haldane J B S. The combination of linkage values and the calculation of distance between the loci of linked factors. Genetics, 1919, 8: 299–309

[7]Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y. QTL analysis for yield components and kernel–related traits in maize across multi–environments. Theor Appl Genet, 2011, 122: 1305–1320

[8]Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268–1274

[9]Lübberstedt T, Melchinger A E, Schon C C, Utz H F, Klein D. QTL mapping in testcrosses of European flint lines of maize I. Comparison of different testers for forage yield traits. Crop Sci, 1997, 37: 921–931

[10]Schon C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second–generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70: 648– 659

[11]Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141−145

[12]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in Stress and Nonstress environments: II. Plant height and flowering. Crop Sci, 1996, 36: 1320−1327

[13]Khairallah M M, Bohn M, Jiang C, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, González–de–León D, Hoisington D A. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998, 117: 309−318

[14]Melchinger A E, Utz H F, Schon C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149: 383–403

[15]Veldboom L R, Lee M. Molecular–marker–facilitated studies of morphological traits in maize. II: Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89: 451–458

[16]Veldboom L R, Lee M, Woodman W L. Molecular–marker–facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7–16

[17]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci, 1996, 36: 1310–1319

[18]Kozumplik V, Pejic I, Senior L, Pavlina R, Graham G, Stuber C W. Molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica. 1996, 41: 211–217

[19]Zhang Y, Li Y X, Wang Y, Liu Z Z, Liu C, Peng B, Tan W W, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. Stability of QTL Across Environments and QTL–by–Environment Interactions for Plant and Ear Height in Maize. Agricultural Sciences in China, 2010, 9: 1400–1412

[20]Berke T G, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542–1549

[21]Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Sci, 1993, 33: 1209–1216

[22]Beavis W D, smith O S, Grant D, Fincher R R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896

[23]Cassani E, Bertolini E, Badone F C, Landoni M, Gavina D, Sirizzotti A, Pilu R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed, 2009, 24: 375–385

[24]Vl?du?u C, McLaughlin J, L. Phillips R. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999, 153: 993–1007

[25]Chardon F, Hourcade D, Combes V, Charcosset A. Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two–linked QTL on chromosome 8. Theor Appl Genet, 2005, 112: 1–11

[26]Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti M, Castelletti S, Tuberosa R. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol, 2011, 11: 4

[27]Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K A, Meeley R, Ananiev E V, Svitashev S. Bruggemann E. Conserved noncoding genomic sequences associated with a flowering–time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381

[28]Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips R L. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol, 2002, 48: 601–613

[29]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Shi Y-G(石永刚), Li J-S(李建生), Zheng Y-L(郑用琏). QTL mapping for developmental behavior for plant height in maize. Chin Sci Bull (科学通报), 2003, 48(18): 1959−1964 (in Chinese)

[30]Tang H(汤华), Yan J-B(严建兵), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), Li J-S(李建生). QTL mapping of five agronomic traits in maize. Acta Genet Sin (遗传学报), 2005, 32(2): 203–209 (in Chinese with English abstract)

[31]Lan J-H(兰进好), Chu D(禇栋). Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas (遗传), 2005, 27(6): 925−934 (in Chinese with English abstract)

[32]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141–153

[33]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T. Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839

[34]Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 27: 205–233

[35]Yan J B, Tang H, Huang Y Q, Shi Y G, Li J S, Zheng Y L. Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull, 2003 23: 2601–2607

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Full text



No Suggested Reading articles found!