欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1693-1700.doi: 10.3724/SP.J.1006.2013.01693

• 研究简报 • 上一篇    下一篇

1983—2010年北京市大豆育成品种的亲缘关系分析

刘章雄1,孙石1,李卫东2,陈立军3,常汝镇1,邱丽娟1,*   

  1. 1农作物基因资源与基因改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室 / 中国农业科学院作物科学研究所,北京 100081;2河南省农业科学院经济作物研究所, 河南郑州 450002;3北京市种子管理站, 北京 100088
  • 收稿日期:2012-12-12 修回日期:2013-06-04 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105843
  • 基金资助:

    本研究由农业部保种项目(NB2010-2130135-25-05)和国家科技支撑项目(2011BAD35B06-2-9)资助。

Analysis of Parental Relationship for Soybean Cultivars Released from 1983 to 2010 in Beijing

LIU Zhang-Xiong1,SUN Shi1,LI Wei-Dong2,CHEN Li-Jun3,CHANG Ru-Zhen1,QIU Li-Juan1,*   

  1. 1 National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China; 2 Institute of Industrial Crops Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 3 Beijing Seed Station, Beijing 100088, China
  • Received:2012-12-12 Revised:2013-06-04 Published:2013-09-12 Published online:2013-07-09
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105843

摘要:

追溯北京市1983—201090个大豆品种的系谱信息,计算其亲本间及品种组合间亲缘系数(coefficient of parentageCOP)并据此聚类,旨在探讨北京市育成大豆品种的遗传多样性特点。结果表明,19个品种的父母本间存在亲缘关系,占品种总数的21.11%90个品种间共组成4005个组合,其中63.62%存在亲缘关系,COP平均值为0.031,表明大部分品种亲缘关系相对较远。随着时间的推移,品种间亲缘系数呈下降趋势,但从20052010年亲缘系数值增大。12个品种各自独为一类外,其余78个品种被聚成10类,从中可见不同年代的育种特征和品种的演化过程;中品6619份种质对北京市大豆品种贡献较大,是骨干亲本。北京市品种总体的遗传背景丰富,但随年代推移,遗传多样性有逐渐降低趋势。

关键词: 大豆, 亲缘系数, 遗传多样性, 系谱, 演化

Abstract:

To explore the relationship and genetic diversity of soybean cultivars in Beijing and provide theoretical guidance for soybean breeding, we traced the pedigree information of 90 soybean cultivars released from 1983 to 2010 and calculated the coefficients of parentage (COP) between the parents and between cross combinations. The results showed that 19 of 90 cultivars had relationships in their parents. A total of 4005 cross combinations were made with 90 varieties, and 63.62% of the combinations shared parental relationship, but their average COP value was only 0.031, showing that there existed abundant genetic diversity because there were not close relationship among most cultivars; COP value between cultivars reduced in the process of time, but increased from 2005 to 2010. Cluster analysis suggested that 78 cultivars could be divided into 10 groups, showing characters of cultivars of different times and evolution of cultivars. Nine varieties were found to be core parents. In general, the genetic basis of soybean cultivars in Beijing was abundant but genetic diversity became narrower in the process of time.

Key words: Soybean, Coefficient of parentage, Genetic diversity, Pedigree, Evolution

[1]Cui Z-L(崔章林), Gai J-Y(盖钧镒), Carter T E Jr, Qiu J-X(邱家训), Zhao T-J(赵团结). The Released Chinese Soybean Cultivars and Their Pedigree Analyses (中国大豆育成品种及其系谱分析) (1923–1995). Beijing: China Agriculture Press, 1998 (in Chinese)

[2]Sun G-H(孙贵荒), Zhang R-S(张仁双), Sun E-Y(孙恩玉), Men X-Y(门晓云). Pedigree analysis and cytoplasmic source of main soybean cultivars from Liaoling province. Liaoling Agric Sci (辽宁农业科学), 1998, (1): 32–35 (in Chinese)

[3]Committee on Genetic Vulnerability of Major Crops. Genetic vulnerability of Major Crops. National Academy Sciences. Washington D. C, 1972

[4]Souza E, Sorrells M E. Pedigree analysis of North American oat cultivars released from 1951 to 1985. Crop Sci, 1989, 29: 595–601

[5]Mercado L A, Souza E, Kephart K D. Origin and diversity of North American hard spring wheats. Theor Appl Genet, 1996, 93: 593–599

[6]Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite maize inbreds as measured by pedigree, Fl grain yield, heterosis, and RFLPs. Theor Appl Genet, 1990, 80: 833–840

[7]Stachel M, Lelley T, Grausgruber H, Vollmann J. Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet, 2000, 100: 242–248

[8]Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica, 2002, 123: 273–285

[9]Chen Y-Q(陈玉清), Zheng Y-L(郑有良), Zhou Y-H(周永红). Genetic diversity of Sichuan wheat germplasm based on coefficient of parentage. J Nanjing Norm Univ (Nat Sci)(南京师大学报?自然科学版), 2002, 25(2): 22–26 (in Chinese with English abstract)

[10]Wang J-C(王江春), Hu Y-J(胡延吉), Yu S-L(余松烈), Wang Z-L(王振林), Liu A-F(刘爱峰), Wang H-G(王洪刚). Relationship coefficient analysis among winter wheat varieties and their parents in Shandong province after liberation. Sci Agric Sin (中国农业科学), 2006, 9(4): 664–672 (in Chinese with English abstract)

[11]Xu X-D(徐晓丹), Feng J(冯晶), Lin R-M(蔺瑞明), Zhao L(赵蕾), Lin F(林凤), Xu S-C(徐世昌). Coefficient of parentage analysis for leading wheat cultivars in Henan province. J Triticeae Crops (麦类作物学报), 2011, 31(4): 653–659 (in Chinese with English abstract)

[12]Lima M L A, Garcia A A F, Oliveira K M, Matsuoka S, Arizono H, de Souza Jr C L, de Souza A P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugarcane (Saccharum spp.). Theor Appl Genet, 2002, 104: 30–38

[13]Duarte Filho L S C, Silva P P, Santos J M, Barbosa G V S, Ramalho-Neto C E, Soares L, Andrade J C F, Almeida C. Genetic similarity among genotypes of sugarcane estimated by SSR and coefficient of parentage. Sugar Tech, 2010, 12(2): 145–149

[14]Wang S, Lu Z. Genetic diversity among parental lines of Indica hybrid rice (Oryza sativa L.) in China based on coefficient of parentage. Plant Breed, 2006, 125(6): 606–612

[15]Sneller C H. Pedigree analysis of elite soybean lines. Crop Sci, 1994, 34: 1515–1522

[16]Helms T, Vallad G, McClean P, Orf J. Genetic variance, coefficient of parentage, and genetic distance of six soybean populations. Theor Appl Genet, 1997, 94(1): 20–26

[17]Cui Z L, Carter T E Jr, Burton J W. Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage. Crop Sci, 2000, 40: 1780–1793

[18]Zhou X L, Carter T E Jr, Cui Z L, Miyazaki S, Burton J W. Genetic diversity patterns in Japanese soybean cultivars based on coefficient of parentage. Crop Sci, 2002, 42: 1331–1342

[19]Cox T S, Lookhart G L, Walker D E, Harrell L G, Albers L D, Rodgers D M. Genetic relationship among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin ployacrylamide gel electrophoretic patterns. Crop Sci, 1985, 25: 1058–1063

[20]Narvel J M, Walter R, Chu W C, Grant D, Shoemaker C. Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci, 2000, 40(5): 1452–1458

[21]Qin J(秦君), Li Y-H(李英慧), Liu Z-X(刘章雄), Guan R-X(关荣霞), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Li G-M(李广敏), Ma Z-Y(马峙英), Qiu L-J(邱丽娟). Genetic relationship among parents of elite soybean (Glycine max) cultivars Suinong14 pedigree revealed by SSR markers. Sci Agric Sin (中国农业科学), 2008, 41(12): 3999–4007 (in Chinese with English abstract)

[22]Li Y-H(李英慧), Liu Y(刘燕), Guan R-X(关荣霞), Wei S-H(魏淑红), Yang G-Y(杨光宇), Zhou X-A(周新安), Zhang M-C(张孟臣), Yang C-Y(杨春燕), Zhu B-G(朱保葛), Li W-D(李卫东), Liu X-Y(刘学义), Xu R(徐冉), Sun J-M(孙君明), Zhu S-L(朱申龙), Zhao T-J(赵团结), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic structure and diversity of both enhanced germplasms developed during 10th Five-Year Plan and modern cultivars released during 1963—1995 in China. Acta Agron Sin (作物学报), 2007, 33(10): 1630–1636 (in Chinese with English abstract)

[23]Zhang L(张磊), Dai O-H(戴瓯和), Zhu G-F(朱国富), Huang Z-P(黄志平). Pedigree analysis of soybean cultivars released in Anhui province. J Anhui Agric Sci (安徽农业科学), 2000, 28(2): 139–140, 142 (in Chinese)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!