作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1799-1805.doi: 10.3724/SP.J.1006.2013.01799
赵冬生,张昌泉,顾铭洪,刘巧泉*
ZHAO Dong-Sheng,ZHANG Chang-Quan,GU Ming-Hong,LIU Qiao-Quan*
摘要:
[1]Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 11.1–11.22[2]Guo L(郭梁), Zhang Z-H(张振华), Zhuang J-Y(庄杰云). Quantitative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2012, 26(2): 235–245 (in Chinese with English abstract)[3]Wei X, Liu L, Xu J, Jiang L, Zhang W, Wang J, Zhai H, Wan J. Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed, 2010, 25: 287–298[4]Wei X-J(魏祥进), Xu J-F(徐俊峰), Jiang L(江玲), Wang H-J(王洪俊), Zhou Z-L(周振玲), Zhai H-Q(翟虎渠), Wan J-M(万建明). Genetic analysis for the diversity of heading date of cultivated rice in China. Acta Agron Sin (作物学报), 2012, 38(1): 10–22 (in Chinese with English abstract)[5]Luan W, Chen H, Fu Y, Si H, Peng W, Song S, Liu W, Hu G, Sun Z, Xie D, Sun C. The effect of the crosstalk between photoperiod and temperature on the heading-date in rice. PLoS ONE, 2009, 4: 5891[6]Hu S-K(胡时开), Su Y(苏岩), Ye W-J(叶卫军), Guo L-B(郭龙彪). Advance in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2012, 26(3): 373–382 (in Chinese with English abstract)[7]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096–1105[8]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Adrabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484[9]Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol, 2011, 52: 1083–1094[10]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confer short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926–936[11]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767[12]Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol, 2011, 157: 1128–1137[13]Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758[14]Yan W, Wang P, Chen H, Zhou H, Li Q, Wang C, Ding Z, Zhang Y, Yu S, Xing Y, Zhang Q. A major QTL, Ghd8 plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330[15]Dai X, Ding Y, Tan L, Fu Y, Liu F, Zhu Z, Sun X, Sun X, Gu P, Cai H, Sun C. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice(Oryza rufipogon). J Integr Plant Biol, 2012, 54: 790–799[16]Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol, 2011, 14: 45–52[17]Song Y-L(宋远丽), Luan W-J(栾维江). Regulatory pathways of rice flowering in different light and temperature conditions. Chin J Rice Sci (中国水稻科学), 2012, 26(4): 383–392 (in Chinese with English abstract)[18]Fu C, Yang XO, Chen X, Chen W, Ma Y, Hu J, Li S. OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biol, 2009, 11: 751–757[19]Yuan Q, Saito H, Okumoto Y, Inoue H, Nishida H, Tsukiyama T, Teraishi M, Tanisaka T. Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theor Appl Genet, 2009, 119: 675–684[20]Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol, 2012, 53: 717–728[21]Yang Y, Peng Q, Chen G X, Li X H, Wu C Y. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol Plant, 2013, 6: 202–215[22]Zhao J, Huang X, Ou-yang X, Chen W, Du A, Zhu L, Wang S, Deng X, Li S. OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE, 2012, 7: 43705[23]Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol, 2012, 53: 709–716[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 5: 4321–4325[25]Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402–408[26]Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011, 38: 603–611[27]Liu X L, Covington M F, Fankhauser C, Chory J, Wagner D R. ELF3 encodes a circadian clock–regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 2001, 13: 1293–1304[28]Kawano K, Tanaka A. Growth duration in relation to yield and nitrogen response in rice plant. Jpn J Breed, 1968, 18: 46–52 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[5] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[6] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|