[1]Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 11.1–11.22
[2]Guo L(郭梁), Zhang Z-H(张振华), Zhuang J-Y(庄杰云). Quantitative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2012, 26(2): 235–245 (in Chinese with English abstract)
[3]Wei X, Liu L, Xu J, Jiang L, Zhang W, Wang J, Zhai H, Wan J. Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed, 2010, 25: 287–298
[4]Wei X-J(魏祥进), Xu J-F(徐俊峰), Jiang L(江玲), Wang H-J(王洪俊), Zhou Z-L(周振玲), Zhai H-Q(翟虎渠), Wan J-M(万建明). Genetic analysis for the diversity of heading date of cultivated rice in China. Acta Agron Sin (作物学报), 2012, 38(1): 10–22 (in Chinese with English abstract)
[5]Luan W, Chen H, Fu Y, Si H, Peng W, Song S, Liu W, Hu G, Sun Z, Xie D, Sun C. The effect of the crosstalk between photoperiod and temperature on the heading-date in rice. PLoS ONE, 2009, 4: 5891
[6]Hu S-K(胡时开), Su Y(苏岩), Ye W-J(叶卫军), Guo L-B(郭龙彪). Advance in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2012, 26(3): 373–382 (in Chinese with English abstract)
[7]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096–1105
[8]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Adrabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484
[9]Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol, 2011, 52: 1083–1094
[10]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confer short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926–936
[11]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767
[12]Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol, 2011, 157: 1128–1137
[13]Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758
[14]Yan W, Wang P, Chen H, Zhou H, Li Q, Wang C, Ding Z, Zhang Y, Yu S, Xing Y, Zhang Q. A major QTL, Ghd8 plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330
[15]Dai X, Ding Y, Tan L, Fu Y, Liu F, Zhu Z, Sun X, Sun X, Gu P, Cai H, Sun C. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice(Oryza rufipogon). J Integr Plant Biol, 2012, 54: 790–799
[16]Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol, 2011, 14: 45–52
[17]Song Y-L(宋远丽), Luan W-J(栾维江). Regulatory pathways of rice flowering in different light and temperature conditions. Chin J Rice Sci (中国水稻科学), 2012, 26(4): 383–392 (in Chinese with English abstract)
[18]Fu C, Yang XO, Chen X, Chen W, Ma Y, Hu J, Li S. OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biol, 2009, 11: 751–757
[19]Yuan Q, Saito H, Okumoto Y, Inoue H, Nishida H, Tsukiyama T, Teraishi M, Tanisaka T. Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theor Appl Genet, 2009, 119: 675–684
[20]Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol, 2012, 53: 717–728
[21]Yang Y, Peng Q, Chen G X, Li X H, Wu C Y. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol Plant, 2013, 6: 202–215
[22]Zhao J, Huang X, Ou-yang X, Chen W, Du A, Zhu L, Wang S, Deng X, Li S. OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE, 2012, 7: 43705
[23]Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol, 2012, 53: 709–716
[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 5: 4321–4325
[25]Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402–408
[26]Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011, 38: 603–611
[27]Liu X L, Covington M F, Fankhauser C, Chory J, Wagner D R. ELF3 encodes a circadian clock–regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 2001, 13: 1293–1304
[28]Kawano K, Tanaka A. Growth duration in relation to yield and nitrogen response in rice plant. Jpn J Breed, 1968, 18: 46–52 |