欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2016-2022.doi: 10.3724/SP.J.1006.2013.02016

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米-大豆轮作及氮肥施用对土壤细菌群落结构的影响

周岚1,2,**,杨永1,**,王占海3,陈阜1,曾昭海1,*   

  1. 1 中国农业大学农学与生物技术学院,北京100193;2 吉林农业科技学院,吉林吉林132101;3呼伦贝尔市农业科学研究所,内蒙古扎兰屯 162650
  • 收稿日期:2013-04-16 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-14
  • 通讯作者: 曾昭海, E-mail: zengzhaohai@cau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871491, 3117509),国家“十二五”科技支撑计划项目(2011BAD16B15)和国家公益性行业(农业)科研专项(201103001)资助。

Influence of Maize-soybean Rotation and N fertilizer on Bacterial Community Composition

ZHOU Lan1,2,**,YANG Yong1,**,WANG Zhan-Hai3,CHEN Fu1,ZENG Zhao-Hai1,*   

  1. 1 College of Agriculture and Biotechnology, Beijing 100193, China; 2 Jilin Agricultural Science and Technology College, Jilin 132101, China; 3Hulunbeler Agricultural Institute, Zalantun 162650, China?
  • Received:2013-04-16 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-14

摘要:

在大豆开花期分别对3个施氮水平下(050100 kg hm-2)大豆连作(大豆-大豆-大豆)、玉米-大豆轮作I (大豆-玉米-大豆)及玉米-大豆轮作II (玉米-玉米-大豆),应用PCR-DGGE技术研究了玉米-大豆轮作及施氮对土壤细菌群落结构变化的影响。结果表明,随着施氮水平的提高,3种种植方式土壤中细菌群落多样性、丰富度均呈减少趋势。高氮处理(100 kg hm-2)明显降低了大豆连作、玉米-大豆轮作II根际土壤细菌群落多样性及丰富度,玉米-大豆轮作I根际土壤细菌群落多样性及丰富度略有降低。玉米-大豆轮作I种植方式可减轻氮肥对其根际细菌群落多样性和丰富度的影响,但施氮明显改变了其细菌群落结构。玉米-大豆轮作II中大豆根际土壤细菌群落结构较为稳定,受氮肥影响较小。在3种种植方式的土壤中,分布着酸杆菌门、变形菌门及厚壁菌门细菌,其中前两门菌群占主导地位。

关键词: 轮作, 氮肥, 大豆, 玉米, DGGE, 细菌群落

Abstract:

In soybean flowering period, took rhizosphere soil samples from three treatments including continuous cropping soybean (soybean-soybean-soybean), maize-soybean rotation I(soybean-maize-soybean) and maize-soybean rotation II (maize-maize-soybean). Each treatment had three levels of nitrogen application including 0, 50 and 100 kg ha-1. Soil microbial community changes under maize-soybean rotation system and various nitrogen applications were investigated by the techniques of denaturing gradient gel electrophoresis (DGGE) analysis. The results showed that the biological diversity and abundance of three kinds of soil microbial community had a decline trend along with the increase of nitrogen application levels. Under high nitrogen application level (100 kg ha-1), a significant decrease in diversity and abundance of rhizosphere soil microbial communities was observed in both continuous cropping soybean system and maize-soybean rotation II system. And in maize-soybean rotation I system, there was only a slightly decrease in diversity and abundance of rhizosphere soil microbial communities. Therefore, 1-year maize in rotation with soybean (soybean-maize-soybean) can alleviate the effect of nitrogen fertilizer on rhizosphere soil microbial diversity and richness, but the effect of nitrogen application significantly changed its bacterial community structure. Maize-soybean rotation II system (maize-maize-soybean) was less affected by nitrogen fertilizer and showed relatively high stability. In addition, in those three kinds of soil, there were the categories of Acidobacteria, Proteobacteria and Firmicutes, in which, Acidobacteria and Proteobacteria were predominant.

Key words: Rotation, Nitrogen, Soybean, Maize, PCR-DGGE, Bacterial community

[1]Bu H-Z(卜洪震), Wang L-H(王丽宏), Xiao X-P(肖小平), Yang G-L(杨光立), Hu Y-G(胡跃高), Zeng Z-H(曾昭海). Diversity of microbial community of paddy soil types in double-rice cropping system. Acta Agron Sin (作物学报), 2010, 36(5): 826−832 (in Chinese with English abstract)



[2]Liu X-J(刘新晶), Xu Y-L(许艳丽), Li C-J(李春杰), Meng Q-J(孟庆杰). Effect of soybean rotation system on the bacterial physiological groups. Soybean Sci (大豆科学), 2007, 26(5): 723-727 (in Chinese with English abstract)



[3]Gu Y(谷岩), Qu Q(邱强), Wang Z-M(王振民), Chen X-F(陈喜凤), Wu C-S(吴春胜). Effects of soybean continuous cropping on microbial and soil enzymes in soybean rhizosphere. Sci Agric Sin (中国农业科学), 2012, 45(19): 3955–3964 (in Chinese with English abstract)



[4]Brock T D. The study of microorganisms in situ: progress and problems. Symp Soc Gen Microbiol, 1987, 41: 1–17



[5]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 1 6S rRNA. Appl Environ Microbiol, 1993, 59: 695–700



[6]Li Z-Z(李梓正), Zhu L-B(朱立博), Lin Y-C(林叶春), Hu Y-G(胡跃高), Zeng Z-H(曾昭海). Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir grassland. Acta Ecol Sin (生态学报), 2010, 30(11): 2883–2889 (in Chinese with English abstract)



[7]Qiao Y J, Li Z Z, Wang X, Zhu B, Hu Y G, Zeng Z H. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ, 2012, 58: 174–180



[8]Liu E-K(刘恩科), Zhao B-Q(赵秉强), Li X-Y(李秀英), Jiang R-B(姜瑞波). Microbial C and N biomass and soil community analysis using DGGE of 16SrDNA V3 fragment PCR products under different long-term fertilization systems. Acta Ecol Sin (生态学报), 2007, 27(3): 1079–1085 (in Chinese with English abstract)



[9]Stella A E, Max D C. Effect of soybean plant populations in a soybean and maize rotation. Agron J, 2001, 93: 396–403 



[10]Xing H-Q(邢会琴), Xiao Z-W(肖占文), Yan J-Z(闫吉智), Ma J-C(马建仓), Meng Y(孟嫣). Effects of continuous cropping of maize on soil microbes and main soil nutrients. Pratacult Sci (草业科学), 2011, 28(10): 1777–1780 (in Chinese with English abstract)



[11]Xu Y-L(许艳丽), Liu X-B(刘晓冰), Han X Z(韩晓增), Li Z-L(李兆林), Wang S-Y(王守宇), He X-Y(何喜云). Effect of soybean continuous cropping on its growth and production. Sci Agric Sin (中国农业科学), 1999, 32(suppl): 64–68 (in Chinese with English abstract)



[12]Xue Q-X(薛庆喜), Yang S-P(杨思平), Zhang Y-C(张玉春), Gong X-K(宫学凯), Yang J(杨军), Chen L(陈良). Effects of different crop stubbles on yield and agronomic characters of continuous cropping soybean. Soybean Sci(大豆科学), 2009, 28(21): 72–75 (in Chinese with English abstract)



[13]Liu J-B(刘金波), Xu Y-L(许艳丽). Current research of soil microbial of successive soybean cropping in China. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(1): 132–136 (in Chinese with English abstract)



[14]Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol, 2006, 72: 1719–1728



[15]Wang G-H(王光华), Liu J-J(刘俊杰), Qi X-N(齐晓宁), Jin J(金剑), Wang Y(王洋), Liu X-B(刘晓冰). Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods. Acta Ecol Sin (生态学报), 2008, 28(1): 220–206 (in Chinese with English abstract)



[16]Shi P(时鹏), Gao Q(高强), Wang S-P(王淑平), Zhang Y(张妍). Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity. Acta Ecol Sin (生态学报), 2010, 30(22): 6173–6182 (in Chinese with English abstract)



[17]Ma C-M(马春梅), Tang Y-Z(唐远征), Ji S-N(季尚宁). Long-term crop rotation research—The dynamics investigation of microorganisms around crop rhizosphere during growing season (1). J Northeast Agric Univ (东北农业大学学报), 2004, 35(2): 129–134 (in Chinese with English abstract)



[18]Wu F Z(吴凤芝), Wang X Z(王学征). Effect of soybean-cucumber and wheat-cucumber rotation on soil microbial communits species diversity. Acta Hortic Sin(园艺学报), 2007, 34(6): 1543–1546 (in Chinese with English abstract)



[19]Yao Q(姚钦). Microorganism Diversity of Mollisols in Different Rotation Systems. MS Dissertation of Northeast Forestry University, 2012 (in Chinese with English abstract)



[20]Zhang L(张丽), Yan Q(闫倩), Wang B-L(王保莉), Qu D(曲东). Changes in bacteria diversity of coastal saline soils under different land use patterns. Acta Agric Boreali-Occident Sin (西北农业学报), 2011, 20(8): 163–167 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!