作物学报 ›› 2014, Vol. 40 ›› Issue (04): 644-649.doi: 10.3724/SP.J.1006.2014.00644

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1四川农业大学水稻研究所,四川成都 611130;2曲阜师范大学生命科学学院,山东曲阜 273165
  • 收稿日期:2013-08-02 修回日期:2013-12-12 出版日期:2014-04-12 网络出版日期:2014-01-16
  • 通讯作者: 邓晓建, E-mail: xjdeng2006@aliyun.com
  • 基金资助:

    本研究由国家自然科学基金项目(31171533, 31071402), 四川省科技支撑计划项目(2012NZ0027), 山东省自然科学基金项目(ZR2011CQ015)和山东省高等学校科技计划项目(J11LC22)资助。

Genetic Analysis and Gene Fine Mapping of Yellow-Green Leaf Mutant ygl80 in Rice

LI Yan-Qun1,**,GAO Jia-Xu1,**,XIAO Yun-Hua1,LI Xiu-Lan2,PU Xiang1,SUN Chang-Hui1,WANG Ping-Rong1,DENG Xiao-Jian1,*   

  1. 1 Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; 2 College of Life Science, Qufu Normal University, Qufu 273165, China
  • Received:2013-08-02 Revised:2013-12-12 Published:2014-04-12 Published online:2014-01-16
  • Contact: 邓晓建, E-mail: xjdeng2006@aliyun.com


通过化学诱变获得遗传稳定的水稻黄绿叶突变体ygl80。与野生型亲本10079相比,ygl80突变体在苗期和孕穗期叶片叶绿素分别下降76.64%54.59%,类胡萝卜素含量分别下降53.85%41.18%,成熟期株高、每株有效穗数、每穗着粒数、穗长和千粒重分别减少14.8%16.5%21.3%9.1%7.4%。遗传分析表明,ygl80的突变性状由1对隐性核基因控制。利用(ygl80/浙辐802) F2作为定位群体, 将突变基因定位在第5染色体长臂InDel标记C2C3之间,遗传距离分别为0.24 cM 0.39 cM,两标记之间的物理距离约为90 kb,此区间内包含11个预测基因。基因组序列分析发现,ygl80突变体在编码叶绿素合酶的YGL1(LOC_Os05g28200)基因编码区第5027碱基处(位于第14外显子),碱基C突变为碱基T,使编码蛋白序列第348位的脯氨酸(Pro)突变成亮氨酸(Leu)。该基因是已报道的水稻ygl1黄绿叶突变基因的等位基因。ygl80突变体在整个生育期都表现为黄绿叶,而ygl1突变体在苗期叶片黄化,中期慢慢转绿,后期叶色以及总叶绿素和类胡萝卜素的含量接近野生型,这可能是YGL1基因编码的叶绿素合酶蛋白的氨基酸不同突变位点造成的。

关键词: 水稻, 黄绿叶突变体, YGL1, 遗传分析, 精细定位


A yellow-green leaf mutant ygl80 was isolated by chemical mutagenesis. Compared with the wild-type parent 10079, chlorophyll content of the ygl80 mutantdecreased by 76.64% and 54.59%, and the carotenoid content decreased by 53.85% and 41.18% at the seedling and booting stages, respectively. In addition, plant height, number of productive panicles per plant, number of spikelets per panicle, panicle length and 1000-grain weight reduced by 14.8%, 16.5%, 21.3%, 9.1%, and 7.4%, respectively, at the maturity. Genetic analysis showed that the yellow-green leaf trait of the ygl80 mutant was controlled by one pair of recessive nuclear genes. Genetic mapping of the mutant gene was conducted by using 627 yellow-green leaf individuals from the F2 mapping population of ygl80/Zhefu802. Finally, the mutant gene was mapped between InDel markers C2 and C3 on the long arm of chromosome 5, with genetic distances of 0.24 cM and 0.39 cM, respectively, and with physical distance of 90 kb, in this region eleven predicted genes had been annotated. Sequencing analysis of these candidate genes between the mutant and its wild-type parent revealed a single base change (C5027T) of YGL1 (LOC_Os05g28200) gene for chlorophyll synthase resulted in a missense mutation (P348L) in the encoded product, suggesting that the ygl80 mutant gene is allelic to the ygl1 gene. The ygl80 mutant exhibited yellow-green trait throughout the growing period. But the ygl1 mutant showed yellow-green trait at seedling stage, then turned into green slowly, and its leaf color and chlorophyll and carotenoid contents almost closed to those of the wild-type parent during the later stage of growth. Different phenotypes of the two mutants may be caused by different mutational sites of genomic sequenceof YGL1 gene encoding chlorophyll synthase.

Key words: Oryza sativa L., Yellow-green leaf mutant, YGL1, Genetic analysis, Fine mapping

[1]潘瑞炽, 董愚得. 植物生理学. 北京: 高等教育出版社, 1995. pp 77–79

Pan R Z, Dong Y D. Plant Physiology. Beijing: Higher Education Press, 1995. pp 77–79 (in Chinese)

[2]Krol M, Spangfort M D, Huner N P A, Oquist G, Gustafsson P, Jansson S. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol, 1995, 107: 873–883

[3]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 1996, 112: 821–832

[4]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68

[5]胡忠, 彭丽萍, 蔡永华. 一个黄绿色的水稻细胞核突变体. 遗传学报, 1981, 8: 256–261

Hu Z, Peng L P, Cai Y H. A yellow-green nucleus mutant of rice. Acta Genet Sin, 1981, 8: 256–261 (in Chinese with English abstract)

[6]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880

[7]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell, 2005, 17: 233–240

[8]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312

[9]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472

[10]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337

[11]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003

[12]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Peak N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133

[13]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[14]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818

[15]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 1987,148, 350–382

[16]McCouch S R, Kochert G, Yu Z H, Wang Y Z, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829

[17]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607

[18]Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol, 2007, 58: 321–346

[19]Markwell J P, Thornber J P, Boggs R T. Higher plant chloroplasts: evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc Natl Acad Sci USA, 1979, 76: 1233–1235

[20]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795

[21]Espineda C E, Linford, A S, Devine D, Brusslan J A. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 10507–10511

[22]Rüdiger W. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth Res, 2002, 74: 187–193

[23]Oster U, Tanaka R, Tanaka A, Rüdiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J, 2000, 21: 305–310

[24]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375

[25]Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell, 2011, 23: 3442–3453

[26]Oster U, Bauer C E, Rüdiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem, 1997, 272: 9671–9676

[27]Soll J, Schultz G, Rüdiger W, Benz J. Hydrogenation of geranylgeraniol: two pathways exist in spinach chloroplasts. Plant Physiol, 1983, 71: 849–854

[28]Schmid H C, Oster U, Kögel J, Lenz S, Rüdiger W. Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem, 2001, 382: 903–911

[29] Oster U, Rüdiger W. The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta, 1997, 110: 420–423

[30]吴自明, 张欣, 万建民. 水稻黄绿叶基因的克隆及应用. 生命科学, 2007, 19: 614–615

Wu Z M, Zhang X, Wan J M. Cloning and application of yellow-green leaf gene in rice. Chin Bull Life Sci, 2007, 19: 614–615 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Full text



No Suggested Reading articles found!