欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 2040-2045.doi: 10.3724/SP.J.1006.2014.02040

• 耕作栽培·生理生化 • 上一篇    下一篇

精量播种减免间定苗对棉花产量和产量构成因素的影响

代建龙,李振怀,罗振,卢合全,唐薇,张冬梅,李维江,辛承松,董合忠*   

  1. 山东棉花研究中心 / 山东省棉花栽培生理重点实验室, 山东济南 250100
  • 收稿日期:2014-02-13 修回日期:2014-07-06 出版日期:2014-11-12 网络出版日期:2014-08-05
  • 通讯作者: 董合忠, E-mail: donghz@saas.ac.cn, Tel: 0531-83179255
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-18-21)和山东省产业技术体系棉花创新团队(SDAIT-07-011-05)资助。

Effects of Precision Seeding without Thinning Process on Yield and Yield Components of Cotton

DAI Jian-Long,LI Zhen-Huai,LUO Zhen,LU He-Quan,TANG Wei,ZHANG Dong-Mei,LI Wei-Jiang,XIN Cheng-Song,DONG He-Zhong*   

  1. Cotton Research Center, Shandong Academy of Agricultural Sciences / Shandong Key Lab for Cotton Culture and Physiology, Ji’nan 250100, China
  • Received:2014-02-13 Revised:2014-07-06 Published:2014-11-12 Published online:2014-08-05
  • Contact: 董合忠, E-mail: donghz@saas.ac.cn, Tel: 0531-83179255

摘要:

间苗、定苗是黄河流域棉区十分普及却费工费时的棉田管理措施。通过精量播种减免间苗、定苗环节,将为黄河流域棉区棉花轻简化栽培提供新的技术途径。2011—2013年连续3年在山东省临清市、夏津县、惠民县和东营市4个地点,以常规播种保苗方式为对照,研究了精量播种保苗(播量11.25 kg hm–2,出苗放苗后不间苗、定苗)方式对棉花收获密度、籽棉产量和产量构成因素的影响。年份、地点和播种保苗方式对棉花收获密度、籽棉产量和铃数皆有显著的互作效应。12个点次(3年4个地点)中有10个点次精量播种保苗方式的收获密度达到4.5~8.5株 m–2,铃数和籽棉产量与常规播种保苗方式相当;2011年东营点和2012年惠民点精量播种保苗方式的密度分别只有3.53株 m–2和3.63株 m–2, 铃数比常规播种分别减少13.8%和9.7%,单铃重与各自的对照无显著差异,籽棉产量分别减少14.2%和5.5%。精量播种处理中2个点次减产的主要原因在于收获密度过低,导致铃数降低。通过提高播种质量确保较高的收获密度,精量播种减免间定苗能够实现省工节本不减产,可作为一项重要的简化栽培措施在黄河流域棉区推行。

关键词: 棉花, 精量播种, 减免间定苗, 产量, 产量构成因素

Abstract:

Thinning is a considerably popular practice in cotton field management in the Yellow River valley of China, but such a traditional practice is currently facing a big challenge because of labor costs and time consuming. The objective of the present study was to determine the effects of precision seeding on seed cotton yield and yield components so as to provide a new alternative technique to simplify cotton cultivation in the Region. A three-year field experiment was conducted at four experimental sites (Linqing, Xiajin, Huimin and Dongying) to comparatively investigate the effects of precision seeding without thinning on plant population density, seed cotton yield and yield components, with conventional seeding with thinning (seeding rate of 22.5 kg hm–2 and thinning seedlings two times after emergence) as the control. There existed significant interaction effects among planting years, experimental sites and planting patterns on plant density, seed cotton yield and number of bolls per unit area. In 2011–2013, the plant population reached 4.5–8.5 plants m2 in precision seeding treatment at ten out of twelve sites, and number of bolls per unit area and seed cotton yield were equivalent to those of conventional seeding at these ten sites. However, the seed cotton yield of precision seeding treatment at Dongying in 2011 and at Huimin in 2012 was significantly reduced by 14.2% and 5.5% owing to the low density (3.53 and 3.63 plants m–2) and their boll number was reduced by 13.8% and 9.7% relative to that of conventional seeding treatment. There was no significant difference in single boll weight between the two seeding patterns. The yield reduction of precision seeding treatment at two experimental sites was mainly attributed to the decrease in number of bolls per unit area as a result of reduced plant density. Therefore, costs saving without yield reduction can be realized through precision seeding under the support of improved seeding quality and a relatively high plant density. Precision seeding without seedling thinning can be one of the simplified cultivation measures of cotton production in the Yellow River valley of China.

Key words: Cotton, Precision seeding, Seedling thinning, Yield, Yield components

[1]Dai J L, Dong H Z. Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Res, 2014, 155: 99–110



[2]董合忠. 滨海盐碱地棉花轻简栽培: 现状、问题与对策. 中国棉花, 2011, 38(12): 2–4



Dong H Z. Extensive cultivation of cotton in salt-affected soil: current situation, problems and countermeasures. China Cotton, 2011, 38(12): 2–4 (in Chinese)



[3]Wrather J A, Phipps B J, Stevens W E, Phillips A S, Vories E D. Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta. J Cotton Sci, 2008, 12: 1–7



[4]Zhang L Z, Li B G, Yan G T, Werf W V D, Spiertz J H J, Zhang S P. Genotype and planting density effects on rooting traits and yield in cotton (Gossypium hirsutum L.). J Integr Plant Biol, 2006, 48: 1287–1293



[5]Jost P H, Cothren J T. Phenotypic alterations and crop maturity differences in ultra-narrow row and conventionally spaced cotton. Crop Sci, 2001, 41: 1150–1159



[6]Fowler J L, Ray L L. Response of two cotton genotypes to five equidistant spacing patterns. Agron J, 1977, 69: 733–738



[7]Bednarz C W, Nichols R L, Brown S M. Plant density modifications of cotton within-boll yield components. Crop Sci, 2006, 46: 2076–2080



[8]中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013



Cotton Research Institute, Chinese Academy of Agricultural Sciences. Cultivation of Cotton in China. Shanghai: Shanghai Science and Technology Press, 2013 (in Chinese)



[9]董合忠. 棉花轻简栽培的若干技术问题分析. 山东农业科学, 2013, (4): 115–117



Dong H Z. The analysis of cotton extensive cultivation technology in China. Shandong Agric Sci, 2013, (4): 115–117 (in Chinese)



[10]刘鹏云, 肖春胜, 李海廷. 棉花精量播种技术. 中国棉花, 1999, 26(9): 37



Liu P Y, Xiao C S, Li H T. The cotton precision seeding techniques. China Cotton, 1999, 26(9): 37 (in Chinese)



[11]张晓洁, 李浩, 王志伟. 精量播种对棉花产量结构的影响. 中国棉花, 2012, 39(7): 33–35



Zhang X J, Li H, Wang Z W. Effects of precision seeding on the yield components of cotton. China Cotton, 2012, 39(7): 33–35 (in Chinese)



[12]唐启义, 冯明光. 实用统计分析及其DPS数据处理系统. 北京: 科学出版社, 2002



Tang Q Y, Feng M G. DPS Data processing System for Practical Statistics. Beijing: Science Press, 2002 (in Chinese)



[13]毛树春. 我国棉花种植技术的现代化问题. 中国棉花, 2010, 37(3): 2–5



Mao S C. The modernization of cotton planting techniques in China. China Cotton, 2010, 37(3): 2–5 (in Chinese)



[14]Dong H Z, Li W J, Tang W, Zhang D M, Li Z H. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River valley of China. Field Crops Res, 2006, 98: 106–115



[15]Bednarz C W, Bridges D C, Brown S M. Analysis of cotton yield stability across population densities. Agron J, 2000, 92: 128–135



[16]Jones M A, Wells R. Fiber yield and quality of cotton grown at two divergent population densities. Crop Sci, 1998, 38: 1190–1195



[17]O’Berry N B, Faircloth J C, Edmisten K L, Collins G D, Stewart A M, Abaye A O, Herbert D A, Haygood R A. Plant population and planting date effects on cotton (Gossypium hirsutum L.) growth and yield. J Cotton Sci, 2008, 12: 178–187



[18]Darawsheh M K, Chachalis D, Aivalakis G, Khah E M. Cotton row spacing and plant density cropping systems: II. Effects on seedcotton yield, boll components and lint quality. J Food Agric Environ, 2009, 7: 262–265



[19]Dong H Z, Li W J, Xin C S, Zhang D M. Late planting of short-season cotton in saline fields of the Yellow River Delta. Crop Sci, 2010, 50: 292–300



[20]王大光, 李禹. 棉花精量播种与配套栽培技术. 中国棉花, 2013, 40(5): 40–41



Wang D G, Li Y. Precision sowing and corresponding cultivation techniques in cotton. China Cotton, 2013, 40(5): 40–41 (in Chinese)



[21]李春玲. 棉花精量、半精量播种高产栽培技术探讨. 安徽农学通报, 2010, 16(10): 95–96



Li C L. Studies on high yielding cultivated technology of precision and semi-precision seeding in cotton. Anhui Agric Sci Bull, 2010, 16(10): 95–96 (in Chinese)



[22]董合忠, 李维江, 李振怀, 唐薇, 苑振戈. 抗虫杂交棉精播栽培技术研究. 山东农业科学, 2000, (3): 14–17



Dong H Z, Li W J, Li Z H, Tang W, Yuan Z G. Studies on less seeding-rate cultivation technique for transgenic hybrid cotton. Shandong Agric Sci, 2000, (3): 14–17 (in Chinese with English abstract)



[23]董合忠, 李维江, 唐薇, 李振怀, 牛曰华, 张冬梅. 留叶枝对抗虫杂交棉库源关系的调节效应和对叶片衰老与皮棉产量的影响. 中国农业科学,2007, 40: 909–915



Dong H Z, Li W J, Tang W, Li Z H, Niu Y H, Zhang D M. Effects of retention of vegetative branches on source-sink relation, leaf senescence and lint yield in Bt transgenic hybrid cotton. Sci Agric Sin, 2007, 40: 909–915 (in Chinese with English abstract)



[24]董合忠, 牛曰华, 李维江, 唐薇, 李振怀, 张冬梅. 不同整枝方式对棉花库源关系的调节效应. 应用生态学报, 2008, 19: 819–824



Dong H Z, Niu Y H, Li W J, Tang W, Li Z H, Zhang D M. Regulation effects of various training modes on source-sink relation of cotton. Chin J Appl Ecol, 2008, 19: 819–824 (in Chinese with English abstract)



[25]代建龙, 李维江, 辛承松, 董合忠. 黄河流域棉区机采棉栽培技术. 中国棉花, 2013, 40(1): 35–36



Dai J L, Li W J, Xin C S, Dong H Z. The cultivation techniques of machine-harvested cotton in the Yellow River valley region. China Cotton, 2013, 40(1): 35–36 (in Chinese)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!