欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 2028-2039.doi: 10.3724/SP.J.1006.2014.02028

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮方式对玉米-大豆套作体系中作物产量及玉米籽粒灌浆特性的影响

董茜1,雍太文1,刘小明1,刘文钰1,徐婷1,宋春1,2,王小春1,杨文钰1,*   

  1. 1 四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室, 四川成都 611130; 2 四川农业大学资源环境学院生态环境研究所, 四川成都 611130
  • 收稿日期:2014-01-07 修回日期:2014-07-06 出版日期:2014-11-12 网络出版日期:2014-08-04
  • 通讯作者: 雍太文, E-mail: scndytw@qq.com; 杨文钰, E-mail: wenyu.yang@263.net
  • 基金资助:

    本研究由国家自然科学基金项目(31271669, 31201169)和国家公益性行业(农业)科研专项经费项目(201203096)资助。

Effect of Nitrogen Application Methods on Crop Yield and Grain Filling Characteristics of Maize in Maize-Soybean Relay Strip Intercropping System

DONG Qian1,YONG Tai-Wen1,*,LIU Xiao-Ming1,LIU Wen-Yu1,XU Ting1,SONG Chun1,2,WANG Xiao-Chun1,YANG Wen-Yu1,*   

  1. 1 College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest, Ministry of Agriculture, Chengdu 611130, China; 2 Institute of Ecological and Environmental Sciences, College of Resources and Environment, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2014-01-07 Revised:2014-07-06 Published:2014-11-12 Published online:2014-08-04
  • Contact: 雍太文, E-mail: scndytw@qq.com; 杨文钰, E-mail: wenyu.yang@263.net

摘要:

氮肥的过量施用和低效利用, 造成资源浪费和环境污染, 不利于农业的可持续发展。为了减少氮肥的投入量, 发挥氮肥的增产效益, 本研究对玉米-大豆套作模式的施氮量和施肥距离进行优化调整。通过两年田间试验, 探讨了减氮36% (RN36%)、减氮18% (RN18%)和习惯施氮(CN) 3种施氮水平和距离窄行玉米0 cm (D1)15 cm (D2)30 cm (D3)45 cm (D4) 4种施肥距离对作物产量和玉米花后干物质积累与转运、籽粒灌浆特征的影响。结果表明, 与习惯施氮相比, 减氮18%处理的玉米花后干物质转移量、转移率及对籽粒的贡献率分别提高了22.65%18.75%15.90%, 籽粒平均灌浆速率和最大灌浆速率提高了9.79%10.76%; 玉米、大豆产量及系统周年产量提高了4.95%7.07%5.35%; 各施肥距离间, 以距离窄行玉米15~30 cm的施肥效果最佳。减氮18%, D2处理下玉米的平均灌浆速率、最大灌浆速率、穗粒数及百粒重比玉米常规穴施(D1)处理分别提高了10.32%10.92%9.08%4.75%; 玉米、大豆产量和系统总产最高。玉米-大豆套作体系下, 减氮18%和距离窄行玉米15~30 cm施肥有利于增加玉米花后干物质的积累, 促进干物质向籽粒中转运, 增大灌浆速率, 增加百粒重和穗粒数, 提高玉米产量和大豆产量, 以实现系统周年作物增产。

关键词: 玉米-大豆套作, 减量施氮, 干物质积累与转移, 籽粒灌浆, 产量

Abstract:

Nitrogen fertilizer overused and low use efficiency in agricultural system leads to wasting resources and environment pollution, which is unfavorable for the sustainable agricultural production.In order to improve the nitrogen use efficiency in maize-soybean intercropping system, a two-year field experiment was conducted to investigate the effect of different N application rates and distances on dry matter accumulation and translocation during post-anthesis and grain filling of maize, and the total crop yield in maize-soybean relay strip intercropping system. The experiment included three N application rates [210, 270, and 330 N kg ha-1, which represent reduced 36% (RN36%), 18% (RN18%), and conventional N application amount (CN) , respectively] and four fertilizer application locations [the N fertilizer was applied in the area between the maize and soybean plant rows, the distance from the fertilizer application locations to maize rows was 0 cm (D1),15 cm (D2), 30 cm (D3) and 45 cm (D4), respectively]. The results showed that, compared with CN, dry matter translocation amount and rate, and its contribution to grain yield during maize post-anthesis in the RN18% treatment increased by 22.65%, 18.75%, and 15.90%, respectively, the average filling rate and the maximal filling rate of maize increased by 9.79% and 10.76%, the grain yield of maize, soybean and total crop yield in the maize-soybean relay strip intercropping system increased by 4.95%, 7.07%, and 5.35%, respectively. The fertilizer application locations significantly affected the dry matter accumulation and contribution to grain yield during maize post-anthesis. The fertilizer effect was optimal when the fertilizer application distance was between 15 and 30 cm. With the reduced 18% N application, the average filling rate, the maximal filling rate, grain number per spike and 100-kernel weight of maize in the treatment of D2 were increased by 10.32%, 10.92%, 9.08%, and 4.75%, respectively, compared with the treatment of D1. The maximal grain yields of maize and soybean in this maize-soybean relay strip intercropping system were observed in the treatment of RN18% and D2. It is concluded that reduced N application rate (RN18%) and properly N application locations (1530 cm to maize row) could promote the dry matter accumulation and translocation during maize post-anthesis, increase the maize grain filling rate, grain number per spike and 100-kernel weight, which could further improve the total grain yield of maize and soybean in this intercropping system.

Key words: Maize-soybean relay strip intercropping, Reduction of N application, Dry matter accumulation and translocation, Grain filling, Yield

[1] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924



Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915–924 (in Chinese with English abstract)



[2] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008–1010



[3] 李录久, 王家嘉, 李东平, 吴萍萍. 减量施氮对水稻生长和肥料利用效率的影响. 安徽农业科学, 2013, 41(1): 99–103



Li J L, Wang J J, Li D P, Wu P P. Effect of decreasing nitrogen application rate on rice growth and nitrogen use efficiency. J Anhui Agric Sci, 2013, 41(1): 99–103 (in Chinese with English abstract)



[4] 邹晓锦, 张鑫, 安景文. 氮肥减量后移对玉米产量和氮素吸收利用及农田氮素平衡的影响. 中国土壤与肥料, 2011, (6): 25–29



Zhou X J, Zhang X, An J W. Effect of reducing and postponing of N application on yield, plant N uptake, utilization and N balance in maize. Soil Fert Sci China, 2011, (6): 25–29 (in Chinese with English abstract)



[5] 刘学军, 巨晓棠, 张福锁. 减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响. 应用生态学报, 2004, 15: 458–462



Liu X J, Ju X T, Zhang F S. Effect of reduced N application on N utilization and balance in winter wheat summer maize cropping system. Chin J Appl Ecol, 2004, 15: 458–462 (in Chinese with English abstract)



[6] 韩晓增, 邹文秀, 尤梦阳. 减氮、加菌、改善土壤物理性状提高大豆固氮能力. 大豆科技, 2011, (1): 14–16



Han X Z, Zhou W X, You M Y. Advance soybean nitrogen fixation by decreasing nitrogen, adding rhizobium and improving soil physical properties. Soybean Sci Technol, 2011, (1): 14–16 (in Chinese with English abstract)



[7] Ruan W B, Ren T, Chen Q, Zhu X, Wang J G. Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production. Appl Soil Ecol, 2013, 66: 48–55



[8] 战秀梅, 李亭亭, 韩晓日, 左殿博, 左仁辉, 叶冰. 不同施肥方式对春玉米产量、效益及氮素吸收和利用的影响. 植物营养与肥料学报, 2011, 17: 861–868



Zhan X M, Li T T, Han X R, Zuo D B, Zuo R H, Ye B. Effects of nitrogen fertilization methods on yield, profit and nitrogen absorption and utilization of spring maize. Plant Nutr Fert Sci, 2011, 17: 861–868 (in Chinese with English abstract)



[9] Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerbeillant P, Beaudoin N. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ, 2010, 135: 268–278



[10] Szumigalski A R, Van Acker R C. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agron J, 2006, 98: 1030–1040



[11] Zhang G G, Yang Z B, Dong S T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res, 2011, 124: 66–73



[12] Li L, Sun J H, Zhang F S, Li X L, Yang S, Zdenko R . Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123–137



[13] Willey R W, Osiru D S O. Studies on mixtures of maize and bean (Phaseolus vulgaris) with particular reference to plant population. J Agric Sci, 1972, 79: 517–529



[14] Oljaca S, Cvetkovic R, Kovacevic D, Vasic G, Momirovic N. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaeolus vulgaris) intercropping system. J Agric Sci (Cambridge), 2000, 135: 261–270



[15] West T D, Griffith D R. Effect of strip intercropping corn and soybean on yield and profit. J Prod Agric, 1992, 5: 107–110



[16] Ghafarzadeh M, Prechac F G, Cruse R M. Grain yield response of corn, soybean, and oat grown in a trip intercropping system. Am Alt Agric, 1994, 9: 171–177



[17] Kushwaha H S, Chandel A S. Effect of soybean (Glycine max) intercropping under different nitrogen levels on yield, yield attributes and quality of maize (Zea mays). Indian J Agric Sci, 1997, 67: 249–252



[18] 雍太文, 杨文钰, 任万军, 樊高琼, 向达兵. 两种三熟套作体系中的氮素转移及吸收利用. 中国农业科学, 2009, 42: 3170–3178



Yong T W,Yang W Y, Ren W J, Fan G Q, Xiang D B. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Sci Agric Sin, 2009, 42: 3170–3178 (in Chinese with English abstract)



[19] 杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆, 振兴大豆产业. 大豆科学, 2008, 27(1): 1–7



Yang W Y, Yong T W, Ren W J, Fan G Q, Mou J Y, Lu X L. Develop relay-planting soybean, revitalize soybean industry. Soybean Sci, 2008, 27(1): 1–7 (in Chinese with English abstract)



[20] Uhart S A, Andrade F H. Nitrogen deficiency in maize: II. Carbon-nitrogen interaction effects on kernel number and grain yield. Crop Sci, 1995, 35: 1384–1389



[21] 徐祥玉, 张敏敏, 翟丙年, 李生秀. 施氮对不同基因型夏玉米干物质累积转移的影响. 植物营养与肥料学报. 2009, 15: 786–792



Xu X Y, Zhang M M, Zhai B N. Li S X. Effects of nitrogen application on dry matter accumulation and translocation of different genotypes of summer maize. Plant Nutr Fert Sci, 2009, 15: 786–792 (in Chinese with English abstract)



[22] 王小春, 杨文钰, 龚江洪, 卢小红, 李燕蓉. 播期对不同株型玉米灌浆特性的影响. 作物杂志, 2009, (2): 55–57



Wang X C, Yang W Y, Gong J H, Lu X H, Li Y R. Effects of sowing date on grain filling characteristics of maize with different plant types. Crops, 2009, (2): 55–57 (in Chinese with English abstract)



[23] 熊淑萍, 谷秋荣, 何建国, 马新明, 李琳. 水分处理对不同专用型小麦籽粒灌浆特征好产量的影响. 干旱地区农业研究, 2005, 23(4): 113–118



Xiong S P, Gu Q R, He J G, Ma X M, Li L. The effect of different water treatments on characteristics of wheat grain fill and yield of wheat with specialized end-uses. Agric Res Arid Areas, 2005, 23(4): 113–118 (in Chinese with English abstract)



[24] 申丽霞, 王璞, 张软斌. 施氮对不同种植密度下夏玉米产量及子粒灌浆的影响. 植物营养与肥料学报, 2005, 11: 314–319



Shen L X, Wang P, Zhang R B. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Plant Nutr Fert Sci, 2005, 11: 314–319 (in Chinese with English abstract)



[25] 雍太文, 杨文钰, 向达兵, 陈小容, 万燕. 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定. 草业学报, 2012, 21(1): 50–58



Yong T W, Yang W Y, Xiang D B, Chen X R, Wan Y. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Pratacult Sin, 2012, 21(1): 50–58 (in Chinese with English abstract)



[26] 雍太文, 杨文钰, 向达兵, 万燕, 刘卫国, 王小春. 小麦/玉米/大豆和小麦/玉米/甘薯套作对土壤氮素含量及氮素转移的影响. 作物学报, 2012, 38: 148–158



Yong T W, Yang W Y, Xiang D B, Wan Y, Liu W G, Wang X C. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on soil nitrogen content and nitrogen transfer. Acta Agron Sin, 2012, 38: 148–158 (in Chinese with English abstract)



[27] 沈宏, 杨存义, 范小威, 严小龙. 大豆根系分泌物和根细胞壁对难溶性磷的活化. 生态环境, 2004, 13: 633–635



Shen H, Yang C Y, Fan X W, Yan X L. Mobilization of sparingly soluble phosphates by root exudates and root cell wall of soybean seedlings. Ecol Environ, 2004, 13: 633–635 (in Chinese with English abstract)



[28] 李文娟, 何萍, 金继运. 钾素营养对玉米生育后期干物质和养分积累与转运的影响. 植物营养与肥料学报, 2009, 15: 799–807



Li W J, He P, Jin J Y. Potassium nutrition on dry matter and nutrients accumulation and translocation at reproductive stage of maize. Plant Nutr Fert Sci, 2009, 15: 799–807 (in Chinese with English abstract)



[29] 雍太文, 刘小明, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响. 应用生态学报, 2014, 25: 474–482



Yong T W, Liu X M, Liu W Y, Su B Y, Song C, Yang F, Wang X C, Yang W Y. Effect of reduced N application on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system. Chin J Appl Ecol, 2014, 25: 474–482 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!