欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 80-88.doi: 10.3724/SP.J.1006.2015.00080

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对滨海改良盐土棉花钾累积利用的影响

邹芳刚1,2,张国伟1,王友华1,赵文青1,周治国1,*   

  1. 1 南京农业大学 / 农业部南方作物生理生态重点开放实验室,江苏南京210095;2 江苏省种子管理站,江苏南京 210036
  • 收稿日期:2014-06-04 修回日期:2014-09-30 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 周治国, E-mail: giscott@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171487),国家公益性行业(农业)科研专项(201203096)和江苏省农业三新工程项目(SXGC(2013)334)资助。

Effect of Nitrogen Application Amounts on Uptake and Utilization of Potassium in Cotton Grown in Improved Coastal Saline Land Regions

ZOU Fang-Gang1,2,ZHANG Guo-Wei1,WANG You-Hua1,ZHAO Wen-Qing1,ZHOU Zhi-Guo1,*   

  1. 1 Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, China; 2 Seeds Management Station of Jiangsu Province, Nanjing 210036, China
  • Received:2014-06-04 Revised:2014-09-30 Published:2015-01-12 Published online:2014-11-11
  • Contact: 周治国, E-mail: giscott@njau.edu.cn

摘要:

以长江流域大面积种植的转基因棉湘杂棉8号为材料,在江苏省大丰市稻麦原种场(33.2°N,120.5°E)滨海改良盐土上研究施氮量(0、150、300、375、450、600 kg N hm–2)对棉株钾素吸收、利用和分配的影响。结果表明,增施氮肥提高不同生育阶段棉株钾的吸收量,以盛花到见絮期的钾积累增量最大,并改变生育期间的钾吸收比例,使出苗到盛花期的钾吸收比例降低,盛花到吐絮期的钾吸收比例升高;同时,增加施氮还降低生育后期中上部果枝钾浓度的下降速率,但对下部果枝影响较小。随施氮量增加,各部位果枝氮对钾吸收的边际效应(每增施1 kg氮促进钾的吸收量)呈先升高后降低趋势,且果枝部位越高,基于最大边际效应的施氮量越高。在300~375 kg hm–2施氮量范围内,干物质和钾在经济器官中的分配比例提高,钾浓度和钾累积量动态特征参数比较协调,中部和上部果枝氮素对钾吸收的边际效应和钾的皮棉生产效率较高,利于高产形成。高于375 kg hm–2的施氮量导致皮棉产量增幅下降,氮素对钾吸收的边际效应和钾的皮棉生产效率较低;低于375 kg hm–2的施氮量降低干物质和钾经济系数,不利于高产形成。

关键词: 棉花, 改良盐土, 施氮量, 钾吸收利用

Abstract:

A field experiment using transgenic cotton cultivar Xiangzamian 8 with different nitrogen application amounts(0, 150, 300, 375, 450, and 600 kg N ha1)was carried out in the coastal improved saline land region of Dafeng city in 2010 and 2012. Results showed that the nitrogen application increased potassium uptake of cotton at different growth stages, with the highest increment at the peak flowering-boll opening stage, and the percentages of potassium uptake decreased from seedling to peak flowering stages, but increased from peak flowering to boll maturing stages. In addition, nitrogen application lowered the decreasing speed of potassium concentration in middle and upper fruiting branches at later growth stages, but had less influence on lower fruiting branches. The marginal effect of potassium uptake (promoted amount of potassium uptake due to 1 kg increase of N application) showed an upward-downward trend with the increase of nitrogen application rate. The higher the position of fruiting branches grown, the more the nitrogen amount demanded to meet the highest marginal effect of potassium uptake. Under the nitrogen application of 300–375 kg ha–1, the economic coefficient of biomass and potassium was relatively high, eigenvalues of dynamic model of potassium content and potassium accumulation were relatively coordinate, and the marginal effect of potassium uptake and lint production efficiency of potassium were relatively high in middle and upper fruiting branches. Excessively high nitrogen application resulted in a relatively narrow rise of yield, and the marginal effect of potassium uptake and lint production efficiency of potassium were relatively low; excessively low nitrogen application, however, also resulted in a lower yield, as economic coefficient of biomass and potassium was relatively low.

Key words: Cotton, Improved saline land, Nitrogen amounts, Potassium uptake and utilization

[1]黄增荣, 隆小华, 李洪燕, 辛本荣, 李青, 刘玲, 刘兆普. 江苏北部滨海盐土盐肥耦合对菊芋生长和产量的影响. 土壤学报, 2010, 47: 709–714

Huang Z R, Long X H, Li H Y, Xin B R, Li Q, Liu L, Liu Z P. Coupling effect of salt and fertilizer application on Helianthus tuberosus in soils of North Jiangsu coastal mudflat different in salt concentration. Acta Pedol Sin, 2010, 47: 709–714 (in Chinese with English abstract)

[2]Zhang F S, Niu J F, Zhang W F, Chen X P, Li C J, Yuan L X, Xie J C. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil, 2010, 335: 21–34

[3]陈波浪, 吴海华, 曹公利, 郝丽娜, 盛建东. 不同肥力水平下立架栽培甜瓜干物质累积和氮、磷、钾养分吸收特性. 植物营养与肥料学报, 2013, 19: 142–149

Chen B L, Wu H H, Cao G L, Hao L N, Sheng J D. Characteristics of dry matter accumulation and N,P and K assimilations of trellis–cultivated melon under different fertility rates. Plant Nutr Fert Sci, 2013, 19: 142–149 (in Chinese with English abstract)

[4]Jin S H, Huang J Q, Li X Q, Zheng B S, Wu J S, Wang Z J, Liu G H, Chen M. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Caryacathayensis. Tree Physiol, 2011, 31: 1142–1151

[5]Zhao D L, Oosterhuis D M, Bednarz C W. Influence of potassium deficiency on photosynthesis, chorophyll content, and chloroplast ultrastructure of cotton plant. Photosynthetica, 2001, 39: 103–109

[6]王旭东, 于振文, 王东. 钾对小麦旗叶蔗糖和籽粒淀粉积累的影响. 植物生态学报, 2003, 27: 196–201

Wang X D, Yu Z W, Wang D. Effect of potassium on sucrose content of flag leaves and starch accumulation of kernels in wheat. Acta Phytoecol Sin, 2003, 27: 196–201 (in Chinese with English abstract)

[7]Pettigrew W T. Potassium deficiency increase specific leaf weight and leaf glucose levels of field–grown cotton. Agron J, 1999, 91: 962–968

[8]Yang G Z, Tang H Y, Nie Y C, Zhang X L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron, 2011, 35: 164–170

[9]Wiedenfeld B, Wallace B W, Hons F. Foliar application of urea and triazone nitrogen to cotton. J Plant Nutr, 2009, 32: 274–286

[10]娄善伟, 高云光, 郭松仁, 赵强, 张巨松. 不同栽培密度对棉花植株养分特征及产量的影响. 植物营养与肥料学报, 2010, 16: 953–958

Lou S W, Gao Y G, Guo R S, Zhao Q, Zhang J S. Effects of planting density on nutrition characteristics and yield of cotton, Plant Nutr Fert Sci, 2010, 16: 953–958 (in Chinese with English abstract)

[11]Dong H Z, Kong W, li W, Tang W, Zhang D M. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two field with varying fertility. Field Crops Res, 2010, 119:106–113

[12]Zheng Y H, Wang Z L, Sun X Z, Jia A J, Jiang G M, Li Z J. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environ Exp Bot, 2008, 62: 129–138

[13]李伶俐, 房卫平, 谢德意, 马宗斌, 杜远仿, 张东林. 施氮量对杂交棉干物质积累、分配和氮磷钾吸收、分配与利用的影响. 棉花学报, 2010, 22: 347–353

LI L L, Fang W P, Xie D Y, Ma Z B, Du Y F, Zhang D L. Effects of nitrogen application rate on dry matter accumulation and N, P, K uptake and distribution in different organs and utilization of hybrid cotton under high–yield cultivated condition. Cotton Sci, 2010, 22: 347–353 (in Chinese with English abstract)

[14]徐娇, 孟亚利, 睢宁, 宋为超, 周治国. 种植密度对转基因棉氮、磷、钾吸收和利用的影响. 植物营养和肥料学报, 2013, 19: 174–181

Xu J, Meng Y L, Sui N, Song W C, Zhou Z G. Effects of planting density on uptake and utilization of N, P and K of transgenic cotton. Plant Nutr Fert Sci, 2013, 19: 174–181 (in Chinese with English abstract)

[15]薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利率动态变化的影响. 生态学报, 2006, 26: 3631–3640

Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering. Acta Ecol Sin, 2006, 26: 3631–3640 (in Chinese with English abstract)

[16]薛晓萍, 陈兵林, 郭文琦, 周治国, 张丽娟, 王以琳. 棉花临界需氮量动态定量模型. 应用生态学报, 2006, 17: 2363–2370

Xue X P, Chen B L, Guo W Q, Zhou Z G, Zhang L J, Wang Y L. Dynamic quantitative model of critical nitrogen demand of cotton. Chin J Appl Ecol, 2006, 17: 2363–2370 (in Chinese with English abstract)

[17]鲁雪林, 王秀萍, 张国新, 刘雅辉. 施氮对滨海盐碱地棉花生长发育及产量的影响. 安徽农业科学, 2012, 40: 12408–12409

Lu X L, Wang X P, Zhang G X, Liu Y H. Study on the effects of different nitrogen amount on the growth and development and yield of cotton (Gossypium hirsutum L.) in saline fields. J Anhui Agric Sci, 2012, 40:12408–12409 (in Chinese with English abstract)

[18]刘连涛, 李村东, 孙红春, 路文静, 冯丽肖. 氮素营养水平对棉花不同部位叶片衰老的生理效应. 植物营养与肥料学报, 2007, 13: 910–914

Liu L T, Li C D, Sun H C, Lu W J, Feng L X. Physiological effects of nitrogen nutrition on the senescence of cotton leaves at different positions. Plant Nutr Fert Sci, 2007, 13: 910–914 (in Chinese with English abstract)

[19]杨志彬, 陈兵林, 周治国. 施氮量对花铃期棉花果枝生物量累积时空变异特征的影响. 应用生态学报, 2008, 19: 2215–2220

Yang Z B, Chen B L, Zhou Z G. Effects of nitrogen application rate on spatiotemporal variability of biomass accumulation of cotton’s fruiting branch at flower and boll stage. Chin J Appl Ecol, 2008, 19: 2215–2220 (in Chinese with English abstract)

[20]Bednarz C W, Oosterhuis D M, Evans R D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot, 1998, 39: 131–139

[21]夏颖, 姜存仓, 陈防, 陈防, 鲁剑巍, 李小坤, 郝艳淑. 棉花钾营养与钾肥施用的研究进展. 华中农业大学学报, 2010, 29: 658–663

Xia Y, Jiang C C, Chen F, Lu J W, Li X K, Hao Y S. Review on potassium nutrient and potassium fertilizer application of cotton. J Huazhong Agric Univ, 2010, 29: 658–663 (in Chinese with English abstract)

[22]Szczerba M W, Britto D T, Kronzucker H J. K+ transport in plants: physiology and molecular biology. J Plant Physiol, 2009, 166: 447–466

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[9] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[10] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[11] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[12] 杨志远, 舒川海, 张荣萍, 杨国涛, 王明田, 秦俭, 孙永健, 马均, 李娜. 不同株型杂交籼稻对氮肥的耐受性差异比较[J]. 作物学报, 2021, 47(8): 1593-1602.
[13] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[14] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[15] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!