作物学报 ›› 2015, Vol. 41 ›› Issue (06): 900-909.doi: 10.3724/SP.J.1006.2015.00900
马建辉,张黛静,高小龙,邵云,姜丽娜*
MA Jian-Hui,ZHANG Dai-Jing,GAO Xiao-Long,SHAO Yun,JIANG Li-Na*
摘要:
转录因子广泛参与植物抗逆胁迫反应,全面分析挖掘小麦染色体组供体物种乌拉尔图小麦中的转录因子,对进一步挖掘分析六倍体小麦转录因子的分子功能具有重要意义。本研究通过生物信息学分析,在乌拉尔图小麦基因组数据中鉴定得到条全长转录因子,其中条能被准确定位在染色体上,并发现对转录因子发生了复制;通过进化树分析,发现条转录因子被分为个小亚族,且小亚族内部的基因结构相对保守。通过荧光定量分析所选基因在非生物胁迫下的表达模式,筛选得到条在不同非生物胁迫下均上调表达的转录因子,为进一步分析其功能打下基础。
[1]Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet, 1994, 244: 563–571[2]Eulgem T, Rushton PJ, Robatzek S, Somssich I E. The WRKY super family of plant transcription factors. Trends Plant Sci, 2000, 5: 199–206[3]Yu L, Chen C, Chen Z. Evidence for an important role of the WRKY DNA-binding proteins in the regulation of the NPR1 gene expression. Plant Cell, 2001, 13: 1527–1539[4]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51: 21–37[5]Jiang Y, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol, 2006, 6: 25[6]Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91–105[7]Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot, 2010, 61: 3901–3914[8]Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23: 1639–1653[9]Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005, 102: 17531–17536[10]Xie Z, Zhang Z L, Zou X, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functional analysis of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137: 176–189[11]Ross C A, Liu Y, Shen Q J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49: 827–842[12]Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh PN, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49: 865–879[13]Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863–4874[14]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21–30[15]Hwang S H, Yie S W, Hwang D J. Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens. Plant Sci, 2011, 181: 316–323[16]Song Y, Chen L, Zhang L, Yu D. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J Biosci, 2010, 35: 459–471[17]Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y, Hu Y. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol, 2013, 13: 148[18]Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, Yu S. Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genomics, 2014: 1-19[19]Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J, 2002, 31: 319–330[20]Wei W, Zhang Y, Han L, Guan Z, Chai T. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep, 2008, 27: 795–903[21]Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca Am, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol, 2004, 55: 339–416[22]Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One, 2013, 8: e65120[23]Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156–1170[24]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90[25]Finn R D, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Volker Hollich1 TL, Moxon S, Marshall M, Khanna A, Durbin R, Eddy S R, Sonnhammer E L L, Bateman A. Pfam: clans, web tools and services. Nucl Acids Res, 2006, 34: D247–D251[26]Letunic I, Doerks T, Bork P. SMART 6: recent updates and new developments. Nucl Acids Res, 2009, 37: D229–D232[27]Wei H, Li W, Sun X, Zhu S, Zhu J. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii. PLoS One, 2013, 8: e68435[28]Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94: 6809–6814[29]Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl Acids Res, 2006, 34: W609–W612[30]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29: 1023–1026 (in Chinese with English abstract)[31]Holub E B. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001, 2: 516–527[32]Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S, Cheng B. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One, 2012, 7: e40120[33]Wu H, Ni Z, Yao Y, Guo G, Sun Q. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Prog Nat Sci, 2008, 18: 697–705 |
[1] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[2] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[3] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[4] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[5] | 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175. |
[6] | 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016. |
[7] | 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037. |
[8] | 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850. |
[9] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[10] | 柯丹霞,彭昆鹏,张孟珂,贾妍,王净净. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356. |
[11] | 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020. |
[12] | 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521. |
[13] | 高巍**,刘会利**,田新权,张慧,宋洁,杨勇,龙璐,宋纯鹏*. 海岛棉转录因子基因GbMYB60的克隆、表达及其抗逆性分析[J]. 作物学报, 2016, 42(09): 1342-1351. |
[14] | 张彦楠,蔡大润,黄先忠*. 亚洲棉bZIP蛋白家族的鉴定及GaFDs基因的组织表达分析[J]. 作物学报, 2016, 42(06): 832-843. |
[15] | 石璇,王茹媛,唐君,李宗芸,罗永海. 利用简化基因组技术分析甘薯种间单核苷酸多态性[J]. 作物学报, 2016, 42(05): 641-647. |
|