欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 641-647.doi: 10.3724/SP.J.1006.2016.00641

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用简化基因组技术分析甘薯种间单核苷酸多态性

石璇1,王茹媛1,唐君2,李宗芸1,*,罗永海1,*   

  1. 1江苏师范大学生命科学学院,江苏徐州221116;2中国农科院甘薯研究所 / 国家甘薯改良中心,江苏徐州 221121
  • 收稿日期:2015-10-19 修回日期:2016-01-11 出版日期:2016-05-12 网络出版日期:2016-02-18
  • 通讯作者: 罗永海, E-mail: yhluo@jsnu.edu.cn; 李宗芸, E-mail: zongyunli@jsnu.edu.cn
  • 基金资助:

    本项目获得江苏高校优势学科建设工程资助项目, 农业部农作物保护项目(2015NWB006), 江苏省自然科学基金面上项目(BK2012579, BK20141146)和江苏省高校自然科学研究重大项目(12KJA180001)资助。

Analysis of Interspecific SNPs in Sweetpotato Using a Reduced-Representation Genotyping Technology

SHI Xuan1,WANG Ru-Yuan1,TANG Jun2,LI Zong-Yun1,*,LUO Yong-Hai1,*   

  1. 1 School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; 2 Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences / National Sweetpotato Improvement Centre, Xuzhou 221121, China
  • Received:2015-10-19 Revised:2016-01-11 Published:2016-05-12 Published online:2016-02-18
  • Contact: Luo Yonghai, E-mail: yhluo@jsnu.edu.cn; 李宗芸, E-mail: zongyunli@jsnu.edu.cn
  • Supported by:

    This study was supported by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Project on Crop Conservation Funded by the Ministry of Agriculture of China (2015NWB006), the General Projects Funded by Natural Science Foundation of Jiangsu Province (BK2012579, BK20141146), and the Major Project Funded by Natural Science Foundation of Jiangsu Higher Education Institutions (12KJA180001).

摘要:

选用Xushu18 (6x)和Nancy Hall (6x)、2个二倍体I. trifida (2x)品系(4597-10和4597-21)、四倍体I. trifida (4x)、六倍体I. trifida (6x)、二倍体I. temussima (2x)和I. littorallis (2x)以简化基因组测序技术SLAF-seq测序,获得724 589个SLAF标签,其中多态性SLAF标签35 310个。通过序列分析,获得40 765个有效单核苷酸多态(SNP),并用这些SNP分析了8个种质的群体结构和系统发生树。结果表明,利用简化基因组测序技术SLAF-seq能高效、低成本地开发出大量可用于群体遗传分析的SNP标记;通过构建进化树发现甘薯栽培种和野生种I. trifida的亲缘关系比较近。这些分析结果为进一步研究甘薯栽培种的起源提供了基础数据。

关键词: 甘薯, SLAF-seq, 分子标记, SNP, 进化分析

Abstract:

Xushu18 (2x), Nancy Hall (6x), I. trifida (2x) 4597-10, I. trifida (2x) 4597-21, I. trifida (4x), I. trifida (6x), I. temussima (2x), and I. littorallis (2x) were used as experimental materials for sequencing by specific-locus amplified fragment sequencing (SLAF-seq), a high-throughput reduced-representation genotyping technology. In total, 724 589 SLAF tags were obtained and 40 765 SNPs were identified out of 35 310 polymorphic SLAF tags. A total of 40 765 single nucleotide polymorphisms (SNPs) were obtained by sequence analysis. Population structure and phylogenetic relationship of eight germplasm were analyzed using the SNP dataset, which suggests that SLAF-seq can be used to develop large-scale SNPs for population genetic analysis, effectively and economically. Our analysis revealed that the relationship between sweet potato cultivars and the wild species I. trifida is closer. These results provide empirical data for further study of the origin of sweet potato.

Key words: Sweetpotato, SLAF-seq, Molecular marker, SNP, Phylogenetic analysis

[1] Lande R. Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution, 1992, 46: 381–389
[2] Huang J C, Sun M. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet, 2000, 100: 1050–1060
[3] Jarret R L, Gawel N, Whittemore A . Phylogenetic relationships of the sweetpotato [Ipomoea batatas (L.) Lam.]. J Am Soc Hort Sci, 1992, 117: 633–637
[4] Wright S. The genetical structure of populations. Ann Eugen, 1951, 15: 323–354
[5] Buteler M I, Jarret R L, LaBonte D R. Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet, 1999, 99: 123–132
[6] Huang J C, Corke H, Sun M. Highly polymorphic AFLP markers as a complementary tool to ITS sequences in assessing genetic diversity and phylogenetic relationships of sweetpotato (Ipomoea batatas (L.) Lam.) and its wild relatives. Genet Resour Crop Evol, 2000, 49: 541–550
[7] Rajapakse S, Nilmalgoda S D, Molnar M, Ballard R E, Austin D F, Bohac J R. Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on nuclear beta-amylase gene sequences. Mol Phylogenet Evol, 2004, 30: 623–632
[8] Srisuwan S, Sihachakr D, Siljak-Yakovlev S. The origin and evolution of sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci, 2006, 171: 424–433
[9] Jarret R L, Austin D F. Genetic diversity and systematic relationship in sweetpotato (Ipomoea batatas) (L.) Lam.) and related species as revealed by RAPD analysis. Gen Resour Crop Evol, 1994, 41: 165–173
[10] 贺学勤, 刘庆昌, 翟红, 王玉萍. 用RAPD、ISSR和AFLP标记分析系谱关系明确的甘薯品种的亲缘关系. 作物学报, 2005, 10: 1300–1304
He X Q, Liu Q C, Zhai H, Wang Y P. The use of RAPD , ISSR and AFLP markers for analyzing genetic relationships among sweetpotato cultivars with known origin. Acta Agron Sin, 2005, 10: 1300–1304 (in Chinese with English abstract)
[11] Kobayashi M. The Ipomoea trifida complex closely related to sweet potato. In: Shideler S F, Rincon H, eds. Proceedings of the 6th Symposium of the International Society of Tropical Root Crop. Lima, Peru: CIP. 1984. pp 561–568
[12] Roullier C, Kambouo R, Paofa J, Mckey D, Lebot V. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary center of diversity. Heredity, 2013, 1–11
[13] Heffelfinger C, Fragoso C A, Moreno M A, Overton J D, Mottinger J P, Zhao H Y, Tohme J, Dellaporta S L. Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genom, 2014, 15: 979–1001
[14] 王洋坤, 胡艳, 张天真. RAD-seq技术在基因组研究中的现状及展望. 遗传, 2014, 36: 41–49
Wang Y K, Hu Y, Zhang T Z. Current status and perspective of RAD-seq in genomic research. Hereditas (Beijing), 2014, 36: 41–49 (in Chinese with English abstract)
[15] Crow J F, Kimura M. Population Genetics. (Book Reviews: An Introduction to Population Genetics Theory). Science, 1971, 171: 666-–667
[16] Sun X, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma C X, Zeng H P, Xu C H, Song J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. SLAF-seq: an efficient method of large-scale De novo SNP discovery and genotyping using high-throughput sequencing. PloS One, 2013, 8: e58700
[17] Davey J W, Cezard T, Fuentes-Utrila P, Eland C, Gharbi K, Blaxter M L. Special features of RAD Sequencing data: implications for genotyping. Mol Ecol, 2013, 22: 3151–3164
[18] http://potatogenomics.plantbiology.msu.edu
[19] Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655–1664
[20] Hoon M J L D, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics, 2004, 20: 1453–1454
[21] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739
[22] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425
[23] Kriegner A, Cervantes J C, Burg K,Mwanga R O M, Zhang D P. A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed, 2003, 11: 169–185
[24] Cervantes J C, Yencho G C, Kriegner A, Pecota K V, Faulk M A, Mwanga R O M, Sosinski B R. Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers. Mol Breed, 2008, 21: 511–532
[25] 吴洁, 谭文芳, 何俊蓉, 蒲志刚, 王大一, 阎文昭. 甘薯SRAP连锁图构建淀粉含量QTL检测. 植物分子育种, 2005, 6: 841–845
Wu J, Tan W F, He J R, Pu Z G, Wang D Y, Yan W Z. Construct on of SRAP Linkage Map and QTL Mapping for Starch Content in Sweet Potato. Mol Plant Breed, 2005, 6: 841–845 (in Chinese with English abstract)
[26] 唐茜, 何凤发, 王季春, 王瑞娜. 甘薯SRAP遗传图谱构建及淀粉含量QTL初步定位. 西南大学学报(自然科学版), 2010, 32(6): 40–45
Tang Q, He F F, Wang J C, Wang R N. Construct on of SRAP Genetic Map and QTL Mapping for Starch Content in Sweet Potato. J Southwest Univ (Nat Sci Edn), 2010, 32(6): 40–45 (in Chinese)
[27] 蒲志刚, 王大一, 谭文芳, 吴洁, 阎文昭. 利用AFLP构建甘薯连锁图及淀粉含量QTL定位. 西南农业学报, 2010, 23: 1047–1050
Pu Z G, Wang D Y, Tan W F, Wu J, Yan W Z. AFLP Maps and QTL Analysis of Starch Content of Sweet Potato. Southwest China J Agric Sci, 2010, 23: 1047–1050 (in Chinese with English abstract)
[28] 李爱贤, 刘庆昌, 王庆美, 张立明, 翟红, 刘树震. 利用SRAP标记构建甘薯分子连锁图谱. 作物学报, 2010, 36: 1286–1295
Li A X, Liu Q C, Wang Q M, Zhang L M, Zhai H, Liu S Z. Establishment of Molecular Linkage Maps Using SRAP Markers in Sweet Potato. Acta Agron Sin, 2010, 36: 1286–1295 (in Chinese with English abstract)
[29] Zhao N, Yu X X, Jie Q, Li H, Li H, Hu J, Zhai H, He S Z, Liu Q C. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol Breed, 2013, 32:807–820
[30] Li H, Vikram P, Singh R P, Kilian A, Carling J, Song J, Burgueno-Ferreira J A, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics, 2015, 16: 1–15
[31] Srisuwan S, Sihachakr D, Siljak-Yakovlev S. The origin and evolution of sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci, 2006, 171: 424–433
[32] Nishiyama I. Evaluation and domestication of the sweet potato. Bot Mag, 1971, 84: 377–387
[33] Austin D F. The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Gregory P ed. Exploration, Maintenance, and Utilization of Sweet Potato Genetic Resources. 1988, pp 27–60
[34] Roullier C, Duputié A, Wennekes P, Benoit L, Fernández Bringas V M, Rossel G, Tay D, McKey D, Lebot V. Disentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.). PLoS One, 2013, 8: e62707
[35] Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131: 452–462
[36] Zohary D. Unconscious selection and the evolution of domesticated plants. Econ Bot, 2004, 58: 5–10
[37] Allaby R G, Fuller D Q, Brown T A. The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA, 2008, 105: 13982–13986
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[9] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[10] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[13] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[14] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[15] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!