作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1480-1488.doi: 10.3724/SP.J.1006.2017.01480
王翠平1,华学军2,*,林彬3,刘爱华4
WANG Cui-Ping1,HUA Xue-Jun2,LIN Bin3,LIU Ai-Hua4
摘要:
以异源四倍体甘蓝型油菜(Brassica napus)及其二倍体祖先白菜(B. rapa)和甘蓝(B. oleracea)为对象,研究了脯氨酸合成途径关键酶基因P5CS和OAT的进化命运以及各自不同祖先来源的同源基因的差异表达情况。序列比对和进化分析表明,甘蓝型油菜中P5CS基因和OAT基因和其二倍体祖先的相对应基因高度同源;进化上,和二倍体亲本相比甘蓝型油菜P5CS2基因发生了1个拷贝的丢失,而OAT基因没有基因丢失现象;半定量RT-PCR结果表明,甘蓝型油菜中来自二倍体亲本白菜和甘蓝的P5CS2和OAT同源基因在所有检测器官中均表达,没有发生基因沉默;但是它们可能发生了亚功能化,不同祖先来源的2个P5CS2同源基因存在较弱的偏向性表达,不同器官的同源基因表达模式稍有不同;而OAT基因明显偏向于表达来自于甘蓝祖先的同源基因,OAT的2个同源基因的不同器官表达模式基本一致;盐胁迫处理后,来自于甘蓝的BnaC.P5CS1.d表达量显著高于来自于白菜的BnaA.P5CS1.a,表明盐处理条件下甘蓝型油菜偏向性表达BnaC.P5CS1.d。甘蓝型油菜的脯氨酸合成基因BnaA.P5CS1.a和BnaC.P5CS1.d,及BnaA.P5CS2.a和BnaC.P5CS2.c的盐诱导表达模式均基本保持了亲本来源基因的特征。以上结果表明,与二倍体祖先相比,甘蓝型油菜中脯氨酸合成基因序列和表达模式均存在高度保守性,这可能说明了脯氨酸积累在进化上对植物的有利性。
[1] Kishor P B K, Hong Z L, Miao G H, Hu C A A, Verma D P S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387–1394 [2] Schat H, Sharma S S, Vooijs R. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plantarum, 1997, 101: 477–482 [3] Yang S L, Lan S S, Gong M. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol, 2009, 166: 1694–1699 [4] Tavakoli M, Poustini K, Alizadeh H. Proline accumulation and related genes in wheat leaves under salinity stress. J Agric Sci Tech, 2016, 18: 707–716 [5] Dar M I, Naikoo M I, Rehman F, Naushin F, Khan F A. Proline accumulation in plants: roles in stress tolerance and plant development. In: Iqbal N, Nazar R, Khan N A, eds. Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. New Delhi: Springer India Press, 2016. pp 155–166 [6] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560 [7] Wu H H, Zou Y N, Rahman M M, Ni Q D, Wu Q S. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep, 2017, 7: 42389 [8] Mattioli R, Marchese D, D'Angeli S, Altamura M M, Costantino P, Trovato M. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol, 2008, 66: 277–288 [9] Mattioli R, Costantino P, Trovato M. Proline accumulation in plants: not only stress. Plant Signal Behav, 2009, 4: 1016–1018 [10] Mattioli R, Falasca G, Sabatini S, Altamura M M, Costantino P, Trovato M. The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plantarum, 2009, 137: 72–85 [11] Funck D, Winter G, Baumgarten L, Forlani G. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 2012, 12: 191 [12] Delauney A J, Hu C A A, Kishor P B K, Verma D P S. Cloning of ornithine delta-aminotransferase cDNA from Vigna-Aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem, 1993, 268: 18673–18678 [13] Kishor P B K, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K R S S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci India, 2005, 88: 424–438 [14] Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z. Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily sorbonne: molecular modelling and expression analysis. Bot Stud, 2017, 58(1): 10 [15] Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchishinozaki K, Wada K, Harada Y, Shinozaki K. Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic-stress. Plant J, 1995, 7: 751–760 [16] Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez M E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe In, 2004, 17: 343–350 [17] Soltis P S, Soltis D E. The role of genetic and genomic attributes in the success of polyploids. Proc Nati Acad Sci USA, 2000, 97: 7051–7057 [18] Buggs R J, Doust A N, Tate J A, Koh J, Soltis K, Feltus F A, Paterson A H, Soltis P S, Soltis D E. Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity, 2009, 103: 73–81 [19] Wang J, Tian L, Lee H S, Chen Z J. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics, 2006, 173: 965–974 [20] Zhao J W, Buchwaldt L, Rimmer S R, Brkic M, Bekkaoui D, Hegedus D. Differential expression of duplicated peroxidase genes in the allotetraploid Brassica napus. Plant Physiol Bioch, 2009, 47: 653–656 [21] Nagahara U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. J Jap Bon, 1935, 7: 389–452 [22] Blanc G, Wolfe K H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell, 2004, 16: 1679–1691 [23] Yang Y W, Lai K N, Tai P Y, Li W H. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol, 1999, 48: 597–604 [24] Park J Y, Koo D H, Hong C P, Lee S J, Jeon J W, Lee S H, Yun P Y, Park B S, Kim H R, Bang J W, Plaha P, Bancroft I, Lim Y P. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genomics, 2005, 274: 579–588 [25] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Yu J, Meng J, Min J, Poulain J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Z, Li Z, Xiong Z, Zhang Z. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035–1039 [26] Udall J A, Wendel J F. Polyploidy and crop improvement. Crop Sci, 2006, 46: S3–S14 [27] Wang C P, Lin B, Zhang Y Q, Lin Y H, Liu A H, Hua X J. The evolutionary fate of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) genes in allotetraploid Brassica napus. J Syst Evol, 2014, 52: 566–579 [28] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599 [29] Hua X J, van de Cotte B, Van Montagu M, Verbruggen N. The 5 ' untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant J, 2001, 26: 157–169 [30] ?stergaard L, King G J. Standardized gene nomenclature for the Brassica genus. Plant Methods, 2008, 4: 10 [31] Hua S, Shamsi I H, Guo Y, Pak H, Chen M, Shi C, Meng H, Jiang L. Sequence, expression divergence, and complementation of homologous ALCATRAZ loci in Brassica napus. Planta, 2009, 230: 493–503 [32] Cardenas P D, Gajardo H A, Huebert T, Parkin I A, Iniguez-Luy F L, Federico M L. Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae. Theor Appl Genet, 2012, 124: 1215–1228 [33] Deng W, Zhou L, Zhou Y T, Wang Y J, Wang M L, Zhao Y. Isolation and characterization of three duplicated PISTILLATA genes in Brassica napus. Mol Biol Rep, 2011, 38: 3113–3120 [34] Force A, Lynch M, Pickett F B, Amores A, Yan Y L, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 1999, 151: 1531–1545 [35] Adams K L, Liu Z L. Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol, 2007, 17: 1669–1674 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[7] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[8] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[9] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[10] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[11] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[12] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[13] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[14] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
[15] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
|