欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1468-1479.doi: 10.3724/SP.J.1006.2017.01468

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉SRO基因家族的鉴定及表达分析

吕有军1,2,3,杨卫军1,赵兰杰2,姚金波2,陈伟2,李燕2,张永山2,*   

  1. 1 安阳工学院, 河南安阳 455000; 2 中国农业科学院棉花研究所, 河南安阳 455000; 3 棉花生物学国家重点实验室, 河南安阳 455000
  • 收稿日期:2017-01-25 修回日期:2017-05-10 出版日期:2017-10-12 网络出版日期:2017-06-05
  • 通讯作者: 张永山, E-mail: 13938698299@163.com, Tel: 13938698299
  • 基金资助:

    本研究由河南省科技厅基础与前沿项目(112300410019)和棉花生物学国家重点实验室开放课题(CB2014A10)共同资助。

Genome-wide Identification and Expression Analysis of SRO Genes Family in Gossypium hirsutum L.

LYU You-Jun1,2,3,YANG Wei-Jun1,ZHAO Lan-Jie2,YAO Jin-Bo2,CHEN Wei2,LI Yan2,ZHANG Yong-Shan2,*   

  1. 1 Anyang Institute of Technology, Henan Anyang 455000; 2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan Anyang 455000; 3 State Key Laboratory of Cotton Biology, Henan Anyang 455000.
  • Received:2017-01-25 Revised:2017-05-10 Published:2017-10-12 Published online:2017-06-05
  • Contact: 张永山, E-mail: 13938698299@163.com, Tel: 13938698299
  • Supported by:

    This study was support by the Basic and Cutting-edge Research Project for the Science and Technology Agency of Henan Province (112300410019) and the Open Projects for State Key Laboratory of Cotton Biology (CB2014A10).

摘要:

SRO是植物特有的类RCD-ONE蛋白家族, 在植物抵御各种生物和非生物胁迫过程中具有重要的作用。本研究利用生物信息学方法从陆地棉遗传标准系TM-1 (Gossypium hirsutum L. acc. TM-1)基因组中鉴定到12个SRO基因家族成员。多重序列比对及进化树分析表明,12个陆地棉SRO均含有PARP和RST结构域,聚为3类,即A、B和C亚家族。转录组数据分析表明,TM-1全基因组中的Gh_D12G1442在茎中优势表达,Gh_D05G2064在萼片和雄蕊中优势表达;Gh_A05G3788在雄蕊中优势表达,Gh_A12G1318在雄蕊和纤维中优势表达;Gh_A12G2480、Gh_D12G2608、Gh_A05G2257和Gh_D05G2516在纤维中优势表达;Gh_A08G1390、Gh_D08G1685、Gh_A12G2663和Gh_D12G2054具有较为广泛的组织表达。逆境胁迫处理试验表明,Gh_A08G1390明显受冷处理和盐处理的诱导,Gh_D12G2054、Gh_D08G1685、Gh_A12G2663基因在不同的胁迫处理下受到不同程度的诱导。

关键词: 陆地棉, 逆境胁迫, SRO, 基因组

Abstract:

RCD-ONE proteins family (SRO) is a kind of plant-specific proteins, which plays an important role in plants in response to different abiotic stress. In this study, 12 SRO genes were preliminary identified in Gossypium hirsutum L. standard line TM-1 by bioinformatics analysis. Multiple sequence alignment and phylogenetic tree analysis showed that these SROs contain PARP and RST domains, and could be divided into A, B, and C subfamilies. Transcriptome data analysis showed that in the whole genome of TM-1, Gh_D12G1442 advantageously expressed in the stem, Gh_D05G2064 in the sepals and stamens, Gh_A05G3788 advantage expression in stamens, Gh_A12G1318 in stamens and fiber, Gh_A12G2480, Gh_D12G2608, Gh_A05G2257, Gh_D05G2516 advantage expression in fiber; Gh_A08G1390, Gh_D08G1685, Gh_A12G2663, and Gh_D12G2054 in wider organs. In stress treatment showed that Gh_A08G1390 was obviously induced by cold and salt treatments, Gh_D12G2054, Gh_D08G1685, Gh_A12G2663 gene were induced try different stresses to a different degrees.

Key words: Upland cotton, Abiotic stress, SRO, Genomics

[1] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pil-grim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290: 2105–2110 [2] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10: 79–87 [3] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247–258 [4] Yanagisawa S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol, 2004, 45: 386–391 [5] Jaspers P, Blomster T, Brosche M, Saloj?rvi J, Ahlfors R, Vainonen J P, Reddy R A, Immink R, Angenent G, Turck F, Overmyer K, Kangasj?rvi J. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J, 2009, 60: 268–279 [6] Belles-Boix E, Babiychuk E, Montagu M V, Kushnir S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage 1. FEBS lett, 2000, 482: 19–24 [7] Teotia S, Lamb R S. The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol, 2009, 151: 180–198 [8] Ma L F, Zhang J M, Huang G Q, Zheng Y. Molecular characterization of cotton C-repeat/dehydration-responsive element binding factor genes that are involved in response to cold stress. Mol Biol Rep, 2014, 41: 4369–4379 [9] Overmyer K, Tuominen H, Kettunen R Betz C, Langebartels C Jr H S, Kangasj?rvi J. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell, 2000, 12: 1849–1862 [10] Ahlfors R, L?ng S, Overmyer K, Jaspersa P, Broschéa M, Tauriainena A,Kollista H, Tuominena H, Belles-Boixb E, Piippoc M, E. D I, Palvaa T, Kangasj?rvia J. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein–protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell, 2004, 16: 1925–1937 [11] Jaspers P, Blomster T, Brosché M, Saloj?rvi J, Ahlfors R,Vainonen J P, Reddy R A, Immink R, Angenent G, Turck F, Overmyer K, Kangasj?rvi J. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J, 2009, 60: 268–279 [12] Teotia S, Lamb R S. The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol, 2009, 151: 180–198 [13] Ahlfors R, Brosché M, Kollist H, Kangasj?rvi J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J, 2009, 58: 1–12 [14] Borsani O, Zhu J H, Verslues P E, Sunkar R, Zhu J K. Endogenous si RNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279–1291 [15] Jaspers P, Overmyer K, Wrzaczek M, Vainonen J P, Blomster T, Saloj?rvi J, Reddy R A, Kangasj?rvi J. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genom, 2010, 11: 170 [16] You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot, 2013, 64: 569–583 [17] Ahuja I, de Vos R C H, Bones A M, Hall R D. Plant molecular stress responses face climate change. Trends Plant Sci, 2010, 15: 664–674 [18] Ahlfors R, Macioszek V, Rudd J, Brosché M, Schlichting R, Scheel D, Kangasj?rvi J. Stress hormone-independent activation and nuclear translocation of mitogen: activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J, 2004, 40: 512–522 [19] Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y C, Yamamoto K T. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol, 2004, 134: 275–285 [20] Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X M, Huang A, Zhu J K. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 18816–18821 [21] Wei J Z, Tirajoh A, Effendy J, Plant A L. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci, 2000, 159: 135–148 [22] 马骏骏, 李菲, 柳展基, 刘任重, 王立国, 赵灿, 朱新霞. 棉花GhSRO04/GhSRO08基因的克隆及表达分析. 分子植物育种, 2015, 13: 2196–2205 Ma J J , Li F, Liu Z J, Liu R Z, Wang L G. Zhao C, Zhu X X. Cloning and Expression Analysis of Two SRO Genes in Gossypium hirsutum L. Mol Plant Breed, 2015, 13: 2196–2205 [23] 李月, 孙杰, 陈受宜, 谢宗铭. 棉花转录因子GhGT30基因的克隆及转录功能分析. 作物学报, 2013, 39: 806–815 Li Y, Sun J, Chen S Y, Xie Z M. Cloning and transcription function analysis of cotton transcription factor GhGT30 gene. Acta Agron Sin, 2013, 39: 806–815 [24] Deng X, Nie R, Li A, Nie R, Li A, Wei H X, Zheng S Z, Huang W B, Mo Y Q, Su Y R, Wang Q K, Li Y Q, Tang J X, Xu J B, Wong K Y. Ultra-low work function transparent electrodes achieved by naturally occurring biomaterials for organic optoelectronic devices. Adv Mater Interf, 2014, 1 [25] Webb C, Upadhyay A, Giuntini F, Eggleston I, Furutani-Seiki M, Ishima R, Bagby S. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway. Biochemistry, 2011, 50: 3300–3309 [26] Aravind L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem Sci, 2001, 26: 273–275 [27] Zweifel M E, Leahy D J, Barrick D. Structure and Notch receptor binding of the tandem WWE domain of Deltex. Structure, 2005, 13: 1599–1611 [28] He F, Tsuda K, Takahashi M, Kuwasako K, Terada T, Shirouzu M, Watanabe S, Kigawa T, Kobayashi N, Güntert P, Yokoyama S. Structural insight into the interaction of ADP‐ribose with the PARP WWE domains. FEBS lett, 2012, 586: 3858–3864 [29] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014, 46: 567–572 [30] Potters G, Pasternak T P, Guisez Y, Jansen M. K. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ, 2009, 32: 158–169
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[9] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[10] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[11] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[12] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[13] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[14] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[15] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!