欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1458-1467.doi: 10.3724/SP.J.1006.2017.01458

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆转录因子GmMYB52的克隆、表达及结合功能分析

许玲**,王元琮**,何晓兰,黄益洪,徐照龙,邵宏波*,张大勇*   

  1. 江苏省农业科学院农业资源与环境研究所 / 盐土农业研究中心, 江苏南京 210014
  • 收稿日期:2017-02-08 修回日期:2017-04-20 出版日期:2017-10-12 网络出版日期:2017-05-11
  • 通讯作者: 张大勇, E-mail: cotton.z@126.com, Tel: 025-84391105; 邵宏波, E-mail: shaohongbochu@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31600211, 31101166), 江苏省自然科学基金项目(BK20151364)和江苏省农业科技自主创新项目(CX(15)1005)资助。

Isolation, Expression and Binding Function Analysis of the Transcription Factor GmMYB52 in Soybean

XU Ling**,WANG Yuan-Cong**,HE Xiao-Lan,HUANG Yi-Hong,XU Zhao-Long,SHAO Hong-Bo*,ZHANG Da-Yong*   

  1. Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences / Salt-soil Agricultural Research Center, Nanjing 210014, China
  • Received:2017-02-08 Revised:2017-04-20 Published:2017-10-12 Published online:2017-05-11
  • Contact: 张大勇, E-mail: cotton.z@126.com, Tel: 025-84391105; 邵宏波, E-mail: shaohongbochu@126.com

摘要:

MYB类转录因子在植物的生长发育和逆境响应中有重要的调控作用。依据课题组之前盐胁迫相关的数字表达谱(DGEP)数据,获得盐胁迫响应显著上调基因GmMYB52,利用RT-PCR方法从栽培大豆(Williams 82)中克隆该基因片段,并与已公布的Williams 82基因组数据库序列比对,该基因与GmMYB52序列一致。生物信息学分析表明,GmMYB52编码区(CDS)全长1083 bp,编码360个氨基酸。其编码的氨基酸序列具有MYB类转录因子的共同特征,其距N端110~160氨基酸残基处有MYB结构域;系统进化树分析表明,该基因编码的蛋白与GmMYB62、拟南芥AtMYBSt1、苜蓿MtMYB52、水稻OsMYBS3及木豆CcMYB-like protein J的亲缘关系最近;实时荧光定量PCR结果表明,大豆根部GmMYB52的转录水平受外界非生物逆境的调控,用脱落酸(ABA)和低温(4℃)处理后12 h明显上调,用氯化钠和PEG处理0.5~24 h后检测到GmMYB52的转录水平在50%~600%区间内呈现出先上调后下调再上调的趋势。GmMYB52为组成型表达,在大豆的幼苗期和开花期表达较多,在成熟期表达相对较低。GmMYB52在茎叶与开花期的花中表达较强,在根的表达较弱,而在成熟期的豆荚中几乎不表达。亚细胞定位的结果表明,GmMYB52定位于细胞核,符合典型转录因子的定位特征。酵母杂交系统检测表明,GmMYB52 具有转录激活特征,并且能够与MYB相关顺式作用元件基序相结合。本研究结果表明,GmMYB52编码典型的MYB转录因子,具有转录激活活性及DNA结合活性,在大豆中的表达可能与大豆的非生物胁迫和ABA信号转导途径有关,推测其可能参与了大豆对非生物胁迫的响应。

关键词: 大豆, GmMYB52, 表达分析, 转录激活功能, 结合功能

Abstract:

The MYB type transcription factors are involved in plant development and response to abiotic stress. GmMYB52 was significantly up-regulated after salt treatment. In order to gain more information about GmMYB52, GmMYB52 of Williams 82 was cloned by RT-PCR. Bioinformatic analysis showed the CDS of GmMYB52 was 1083bp, encoding 360 amino acid residues. A MYB domain was found in the region of 110 to 160 amino acid residues from N-terminal. Blast results showed that GmMYB52 that highly homologous to are GmMYB62, AtMYBSt1 from Arabidopsis, MtMYB52 from Medicago sativa, OsMYBS3 from Oryza sativa and CcMYB-like protein J from Cajanus Cajan. Quantitative PCR (qPCR) results indicated that the transcription level of GmMYB52 was upregulated under ABA and low temperature stresses, under salt, drought and cold stresses, show a bimodal pattern. GmMYB52 was nearly expressed in all detected tissues, except in pods at maturing stage, and its expression level was relatively higher at seedling or flowering stages than at maturing stage. The transcription level of GmMYB52 was high in stem, leaf, and flower, during seedling and blooming stages, and low in root and pods during maturity stage. Subcellular localization results showed that GmMYB52 was located in the nucleus which is in agreement with the localization characteristics of typical transcription factors. Yeast hybrid assay indicated that GmMYB52 had transcriptional activation functions and could bind to several MYB cis-acting element motifs. In conclusion GmMYB52is a typical 1R-MYB transcription factor, and able to bind MYB cis-acting element motifs. We speculate GmMYB52 is involved in response to the abiotic stress and ABA signal transduction pathway.

Key words: Soybean, GmMYB52, Expression analysis, MYB motif, Transcriptional activation activity

[1] Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants, 2013, 19: 307–321
[2] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581
[3] Paz-Ares J, Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553–3558
[4] Agarwal M, Hao Y, Kapoor A,Dong C H, Fujii H, Zheng X, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281: 37636–37645
[5] Seo P J, Park C M. Auxin homeostasis during lateral root development under drought condition. Plant Signal Behav, 2009. 4: 1002–1004
[6] Abe H, Urao T, Ito T, Seki M, Shinozaki K,Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78
[7] Li L X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y. Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J, 2009, 58: 275–286
[8] Prabu G. Structure of DNA binding MYB transcription factor protein (ScMYBAS1-3) from sugarcane-threading and Ab initio modelling. J Physiol, 2011, 3: 77–82
[9] Prabu G, Prasad D T. Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Rep, 2012, 31: 661–669
[10] Yang A, Dai X, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012: 2541–2556
[11] Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant, 2015, 8: 689–708
[12] Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047–1460
[13] 杜海, 杨文杰, 刘蕾, 唐晓凤, 吴燕民, 黄玉碧, 唐益雄. 大豆MYB转录因子基因GmMYBJ6和GmMYBJ7的克隆及表达分析. 作物学报, 2008, 34: 1179–1187
Du H, Yang W J, Liu L, Tang X F, Wu Y M, Huang Y B, Tang Y X. Cloning and functional identification of the two MYB transcription factors GmMYBJ6 and GmMYBJ7 in soybean. Acta Agron Sin, 2017, 43: 42–50 (in Chinese with English abstract)
[14] 杨文杰, 吴燕民, 唐益雄. 大豆转录因子基因GmMYBJ7的表达及功能分析. 华北农学报, 2012, 27(6): 24–29
Yang W J, Wu Y M, Tang Y X. Expressing and functional analysis of GmMYBJ7 from soybean. Acta Agric Boreali-Sin, 2012, 27(6): 24–29 (in Chinese with English abstract)
[15] Li X, Li J, Zhai Y, Zhao Y, Zhao X, Zhang H, Su L T, Wang Y, Wang Q. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants. Gene, 2013, 532: 72–79
[16] Li X, Wang Y, Yan F, Li J, Zhao Y, Zhao X, Zhai Y, Wang Q. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis. Genet Mol Res, 2016, 15(2): 1–10
[17] 杨文杰, 杜海, 方芳, 杨婉身, 吴燕民, 唐益雄. 大豆两个MYB转录因子基因的克隆及表达分析. 中国农业科学, 2008, 41: 961–970
Yang W J, Du H, Fang F, Yamg W S, WU Y M, Tang Y X. Cloning and characterization of two new MYB transcription factor genes from soybean. Sci Agric Sin, 2008, 41: 961–970 (in Chinese with English abstract)
[18] 魏麦玲, 裴丽丽, 刘佳明, 闵东红, 陈明, 李连城, 马有志, 徐兆师, 张小红. 大豆MYB转录因子基因GmMYB174的克隆及分子特性分析. 植物遗传资源学报, 2015, 16: 94–99
Wei M L, Pei L L, Liu J M, Min D H, Chen M, Li L C, Ma Y Z, Xu Z S, Zhang X H. Isolation and molecular characteristics analysis of soybean transcription factor gene GmMYB174. J Plant Genet Resour, 2015, 16: 94–99 (in Chinese with English abstract)
[19] 许玲, 卫培培, 张大勇, 徐照龙, 何晓兰, 黄益洪, 马鸿翔, 邵宏波. 大豆转录因子基因GmMYB111的克隆及功能分析. 中国农业科学, 2015, 48: 3079–3089
Xu L, Wei P P, Zhang D Y, Xu Z L, He X L, H Y H, Ma H X, Shao H B. Expression and function analysis of the transcription factor GmMYB111 in soybean. Sci Agric Sin, 2015, 48: 3079–3089 (in Chinese with English abstract)
[20] Takahashi R, Yamagishi N, Yoshikawa N. A MYB transcription factor controls flower color in soybean. J Hered, 2013, 104, 149–153
[21] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94–116
[22] Ali Z, Zhang D Y, Xu Z L, Xu L, Yi J X, He X L, Huang Y H, Liu X Q, Khan A A. Trethowan R M, Ma H X. Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS One, 2012, 7: e48819
[23] Shelton D, Stranne M, MikkelsenL, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang T L, Martin C, Bailey P. Transcription factors of lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. Plant Physiol, 2012. 159: 531–547
[24] Stracke R, Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B, Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J, 2007, 50: 660–677
[25] Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13: 67–73
[26] Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529–1539
[27] Weston K, Myb proteins in life, death and differentiation. Cur Opin Genet Dev, 1998, 8: 76–81
[28] Tian A G, Wang J, Cui P, Han Y J, Xu H, Cong L J, Huang X G, Wang X L, Jiao Y Z, Wang B J, Wang Y J, Zhang J S, Chen S Y. Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet, 2004, 108: 903–913

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!