欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2560-2566.doi: 10.3724/SP.J.1006.2022.13054

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米籽粒乳线比例变化与灌浆和干燥过程的关系

李红燕1(), 周林立2, 高尚1, 薛军1, 明博1,*(), 赵如浪3, 王克如1, 谢瑞芝1, 侯鹏1, 王永宏3, 李少昆1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京 100081
    2石河子大学农学院 / 新疆生产建设兵团绿洲生态实验室, 新疆石河子 832000
    3宁夏农林科学院农作物研究所, 宁夏银川 750105
  • 收稿日期:2021-09-13 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-04-01
  • 通讯作者: 明博,李少昆
  • 作者简介:第一作者联系方式: E-mail: 2052083213@qq.com
  • 基金资助:
    国家自然科学基金项目(31971849);财政部和农业农村部国家现代农业产业技术体系建设专项(玉米, CARS-02);中国农业科学院科技创新工程项目(CAAS-ZDRW202004)

Milk line changes of maize grain and the relationship with grain filling and drying process

LI Hong-Yan1(), ZHOU Lin-Li2, GAO Shang1, XUE Jun1, MING Bo1,*(), ZHAO Ru-Lang3, WANG Ke-Ru1, XIE Rui-Zhi1, HOU Peng1, WANG Yong-Hong3, LI Shao-Kun1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
    2Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China
    3Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105, Ningxia, China
  • Received:2021-09-13 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-04-01
  • Contact: MING Bo,LI Shao-Kun
  • Supported by:
    National Natural Science Foundation of China(31971849);China Agriculture Research System of MOF and MARA (Maize, CARS-02);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004)

摘要:

为明确玉米乳线比例与籽粒含水率、籽粒灌浆进程的关系, 为玉米田间收获期决策提供指标依据。本研究于2017年至2018年在宁夏回族自治区银川市永宁县对共计9种春播玉米品种开展观测调查。连续采集吐丝后20~80 d内的果穗中部横切面图像, 测定果穗中部籽粒含水率和百粒干重。利用基于图像辅助的玉米籽粒乳线比例测定工具, 获取不同时期、品种果穗籽粒的乳线比例信息。回归分析结果显示, 在品种和年际间, 乳线比例、籽粒含水率以及灌浆进程的变化略有差异, 但规律一致。玉米乳线比例与籽粒含水率呈极显著的线性关系, 回归方程为y = -0.2572x + 52.482; 玉米乳线比例与籽粒灌浆进程的关系符合极显著的Richards曲线关系, 回归方程为y = 99.65/ [1+exp(2.45-0.07x)](1?3.70)。籽粒乳线比例的变化与一定范围内的籽粒含水率和灌浆进程密切相关, 可以作为不同类型玉米收获期的田间评价指标之一。

关键词: 玉米, 乳线比例, 籽粒干燥, 灌浆动态

Abstract:

In order to clarify the relationship between milk line proportion and grain moisture content and grain filling process and provide references for the decision-making of maize harvest period, a field observational experiment was conducted with 9 spring-sown maize varieties in 2017 and 2018 at Yongning County, Yinchuan City, Ningxia Hui Autonomous Region. In this study, the cross-sectional images, grain moisture content, and 100-grain dry weight were measured continuously on the central part of the ear within 20 to 80 days after silking. An image-assisted software tool was designed to measure the milk line proportion of maize grains, accurately obtaining the information of milk line proportion in different varieties or different growth stages. Regression analysis showed that there were slight differences in the variation of milk line proportion, grain moisture content, and filling process between varieties and inter-years, which generally conformed to the same variation regulations. There was a significant linear relationship between milk line proportion and grain moisture content, and the regression equation was y= -0.2572x+ 52.482. The relationship between milk line proportion and grain filling process was fitted to Richards curve significantly, and the regression equation was y = 99.65/[1+exp(2.45-0.07x)](1?3.70). The changes of milk line proportion were closely related to grain moisture content and grain filling process within a certain range, which can be used as one of the field evaluation indicators for different kinds of maize harvest.

Key words: maize, milk line proportion, grain drying, grain filling

表1

参试玉米品种"

年份
Year
品种
Variety
播种期
Sowing date (month/day)
吐丝期
Silking date (month/day)
授粉日期
Pollination date (month/day)
生育期
Growth period (d)
2017 DH786 4/20 7/2 7/2 119
DH769 4/20 7/5 7/5 137
M751 4/20 7/7 7/9 142
LD575 4/20 7/7 7/11 139
LD586 4/20 7/7 7/10 145
年份
Year
品种
Variety
播种期
Sowing date (month/day)
吐丝期
Silking date (month/day)
授粉日期
Pollination date (month/day)
生育期
Growth period (d)
2018 DH786 4/28 7/1 7/1 116
DH769 4/28 7/8 7/8 122
M751 4/28 7/11 7/13 138
LD575 4/28 7/11 7/14 130
LD586 4/28 7/14 7/16 136
ZD958 4/28 7/13 7/15 137
XY335 4/28 7/9 7/12 135
DK517 4/28 7/11 7/14 135
KX9384 4/28 7/1 7/1 119

图1

玉米籽粒乳线采集图"

图2

乳线比例图像辅助测定示意图"

图3

不同玉米品种吐丝后乳线比例的变化 DH786: 登海786; DH769: 登海769; LD575: 辽单575; LD586: 辽单586; ZD958: 郑单958; XY335: 先玉335; DK517: 迪卡517。"

图4

玉米品种间籽粒乳线比例与含水率的关系 缩写同图3。"

表2

不同品种玉米籽粒乳线持续时间"

年份
Year
品种
Variety
授粉后天数Days after pollination 持续天数
Days of duration
乳线出现
Appearance of milk line
乳线消失
Disappearance of milk line
2017 DH769 27 75 48
DH786 28 60 33
M751 29 78 49
LD575 29 75 46
LD586 30 78 48
2018 DH769 29 67 38
DH786 30 61 31
M751 21 73 52
LD575 23 64 41
LD586 26 77 51
ZD958 28 71 42
XY335 21 72 51
DK517 30 72 42
KX9384 28 67 39

图5

玉米品种间百粒重的变化 缩写同图3。"

表3

籽粒灌浆进程拟合方程"

品种
Variety
方程参数Equation parameters R2
a b c
ZD958 32.08 23.24 0.11 0.987**
XY335 35.27 29.46 0.12 0.993**
LD586 32.94 20.52 0.10 0.990**
DK517 29.34 24.76 0.11 0.986**
M751 34.65 19.64 0.10 0.970**
KX9384 31.20 256.23 0.16 0.998**
DH769 34.40 314.65 0.18 0.992**
LD575 31.03 349.49 0.19 0.984**
DH786 31.12 29.91 0.12 0.981**

图6

不同玉米品种乳线比例与籽粒灌浆进程的关系 缩写同图3。"

表4

玉米乳线比例与籽粒含水率和灌浆进程的关系"

乳线比例
Milk line
proportion
籽粒含水率
Grain moisture content
灌浆进程
Grain filling
process
0 52.48 50.26
10 49.91 58.97
20 47.34 68.17
30 44.77 77.11
40 42.20 84.82
50 39.62 90.64
60 37.05 94.52
70 34.48 96.85
80 31.91 98.16
90 29.34 98.87
100 26.77 99.25
[1] O’Sullivan A, O’Sullivan K, Galvin K, Moloney A P, Troy D J, Kerry J P. Grass silage versus maize silage effects on retail packaged beef quality. J Animal Sci, 1983, (6): 6.
[2] 杨丽, 陈天宇, 王怀鹏, 尹雪巍, 武鹏, 肖金宝, 孙长春, 梁宇鹏, 范红宇, 白雪, 陆美光, 张翼飞, 杨克军, 王玉凤. 寒地半干旱区鲜食玉米品种适应性和品质性状分析. 玉米科学, 2019, 27(3): 54-60.
Yang L, Chen T Y, Wang H P, Yin X W, Wu P, Xiao J B, Sun C C, Liang Y P, Fan H Y, Bai X, Lu M G, Zhang Y F, Yang K J, Wang Y F. Analysis of adaptability and quality characteristics of fresh eating waxy maize in the cold area of China. J Maize Sci, 2019, 27(3): 54-60. (in Chinese with English abstract)
[3] 樊廷录, 王淑英, 王建华, 杨珍. 河西制种基地B玉米杂交种种子成熟期与种子活力的关系. 中国农业科学, 2014, 47: 2960-2970.
Fan T L, Wang S Y, Wang J H, Yang Z. Relationship of days after pollination and vigor traits on maize seed maturity in Hexi seed production area in China. Sci Agric Sin, 2014, 47: 2960-2970. (in Chinese with English abstract)
[4] Havilah E J, Kaiser A G, Nicol H. Use of a kernel milk line score to determine stage of maturity in maize crops harvested for silage. Aust J Exp Agric, 1995, 35: 739-743.
doi: 10.1071/EA9950739
[5] 秦营营, 董树亭. 夏玉米子粒乳线比例与含水量、粒重及营养物质积累的关系. 玉米科学, 2014, 22(2): 81-86.
Qin Y Y, Dong S T. Relationship among kernel milk line formation, water content, grain weight and nutrients accumulation of summer maize. J Maize Sci, 2014, 22(2): 81-86. (in Chinese with English abstract)
[6] Afuakwa J J, Crookston R K. Using the kernel milk line to visually monitor grain maturity in maize. Crop Sci, 1984, 24: 687-691.
doi: 10.2135/cropsci1984.0011183X002400040015x
[7] Hunter J L, Tekrony D M, Miles D F, Egli D B. Corn seed maturity indicators and their relationship to uptake of carbon-14 assimilate. Crop Sci, 1991, 31: 1309-1313.
doi: 10.2135/cropsci1991.0011183X003100050045x
[8] Crookston R K, Kurle J E. Using the kernel milk line to determine when to harvest corn for silage. J Prod Agric, 1988, 1: 293-295.
doi: 10.2134/jpa1988.0293
[9] Wiersma D W, Carter P R, Albrecht K A, Coors J G. Kernel milk line stage and corn forage yield, quality, and dry matter content. J Prod Agric, 1993, 6: 94-99.
doi: 10.2134/jpa1993.0094
[10] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50: 2052-2060.
Li L L, Wang K R, Xie R Z, Ming B, Zhao L, Li S S, Hou P, Li S K. Corn kernel weight and moisture content after physiological maturity in field. Sci Agric Sin, 2017, 50: 2052-2060. (in Chinese with English abstract)
[11] Daynard T B, Duncan W G. The black layer and grain maturity in corn. Crop Sci, 1969, 9: 473-476.
doi: 10.2135/cropsci1969.0011183X000900040026x
[12] Vieira R D, Minohara L, Carvalho N M D, Bergamaschi M C M. Relationship of black layer and milk line development on maize seed maturity. Sci Agric (Piracicaba Braz), 1995, 52: 142-147.
doi: 10.1590/S0103-90161995000100023
[13] 刘国梁, 赵亚丽, 王秀玲, 李鸿萍, 李潮海. 玉米种子成熟度对其活力及F1产量的影响. 中国农业科学, 2016, 49: 4342-4351.
Liu G L, Zhao Y L, Wang X L, Li H P, Li C H. Effects of seed maturity on maize hybrid seed vigor and F1 yield. Sci Agric Sin, 2016, 49: 4342-4351. (in Chinese with English abstract)
[14] Carter M W, Poneleit C G. Black layer maturity and filling period variation among inbred lines of corn (Zea mays L.). Crop Sci, 1973, 13: 436-439.
doi: 10.2135/cropsci1973.0011183X001300040014x
[15] Li L L, Ming B, Xie R Z, Wang K R, Hou P, Gao S, Chu Z D, Zhang W X, Huang Z F, Li H Y, Zhou X L, Li S K. The stability and variability of maize kernel moisture content at physiological maturity. Crop Sci, 2021, 61: 704-714.
doi: 10.1002/csc2.20289
[16] Ma B L, Dwyer L M. Maize kernel moisture, carbon and nitrogen concentrations from silking to physiological maturity. Can J Plant Sci, 2001, 81: 225-232.
doi: 10.4141/P00-073
[17] 赵建华, 樊廷录, 王淑英, 王建华, 孙建好, 李伟绮, 王红梅. 制种玉米种子乳线发育的水氮效应. 中国生态农业学报, 2015, 23: 938-945.
Zhao J H, Fan T L, Wang S Y, Wang J H, Sun J H, Li W Q, Wang H M. Effect of irrigation and nitrogen on milk line development in maize seed. China J Eco-Agric, 2015, 23: 938-945. (in Chinese with English abstract)
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[4] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[5] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[6] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[7] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[11] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[12] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[13] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[2] 李浩;张平平;查向东;夏先春;何中虎. 优质面包小麦品种济南17和豫麦34灌浆期高温胁迫差异表达基因的分离[J]. 作物学报, 2007, 33(10): 1644 -1653 .
[3] 俞履圻;林权. 中国栽培稻种亲缘的研究[J]. 作物学报, 1962, 1(03): 232 -258 .
[4] 黄华宏;陆国权;舒庆尧. 高色素甘薯淀粉糊化特性的基因型差异[J]. 作物学报, 2005, 31(01): 92 -96 .
[5] 林瑞余;陈鸿飞;邓家耀;梁义元;梁康迳;林文雄. 不同栽培模式早稻-再生稻的能量积累与热值分析[J]. 作物学报, 2007, 33(11): 1794 -1801 .
[6] 李尧权. 不同插苗期对甘薯块根膨大的影响[J]. 作物学报, 1963, 2(01): 69 -82 .
[7] 肖达人. 甘蓝型油菜(Brassica napus.L)种皮颜色与种子含油量的相关分析[J]. 作物学报, 1982, 8(04): 245 -254 .
[8] 张宪银, 薛庆中. 水稻胚乳特异性启动子Gt1的克隆及其功能验证[J]. 作物学报, 2002, 28(01): 110 -114 .
[9] 王云飞;赵法茂;李天骄;鞠倩;王宪泽. 小麦籽粒灌浆过程中淀粉去分支酶的类型、活性及其纯化[J]. 作物学报, 2007, 33(11): 1840 -1844 .
[10] 韩胜芳;谷俊涛;肖凯. 高效表达黑曲霉PhyA基因改善白三叶草对有机态磷的利用[J]. 作物学报, 2007, 33(02): 250 -255 .