欢迎访问作物学报,今天是

作物学报

• •    

气候变化对作物病虫害影响的研究进展

李心怡   陈欣童   赵闯*   王茜   丛佳慧   林若薇   邱渝欣  杨晓光
  

  1. 中国农业大学资源与环境学院, 北京100193
  • 收稿日期:2025-06-12 修回日期:2025-10-15 接受日期:2025-10-21 出版日期:2025-10-27 网络出版日期:2025-10-27
  • 通讯作者: 赵闯, E-mail: zhaochuang@cau.edu.cn
  • 基金资助:
    本研究由2025年中国气象局乡村振兴气象服务专项(2025101010YE050)资助。

Effects of climate change on crop diseases and insect pests

Li Xin-Yi, Chen Xin-Tong, Zhao Chuang*, Wang Xi, Cong Jia-Hui, Lin Ruo-Wei, Qiu Yu-Xin, and Yang Xiao-Guang   

  1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2025-06-12 Revised:2025-10-15 Accepted:2025-10-21 Published:2025-10-27 Published online:2025-10-27
  • Contact: 赵闯, E-mail: zhaochuang@cau.edu.cn
  • Supported by:
    This study was supported by the Rural Revitalization Meteorological Service Special Project of China Meteorological Administration (2025101010YE050).

摘要: 全球气候变化通过加剧气温升高、改变降水格局和增加CO2浓度,正在系统性地增加病虫害对农作物的危害,对国家粮食安全构成严峻挑战。本文综述了我国农作物病虫害发生现状与特征、气候变化对病虫害发生态势的影响机制,揭示了温度升高加速害虫发育与向北扩张、降水格局改变对病虫害的双向调控、以及CO2浓度升高通过改变寄主植物生理间接影响病虫害动态的核心过程,并强调多因子交互作用(如高温高湿)进一步放大了灾害风险。在应对策略上,虽已初步形成涵盖抗逆育种与绿色农药开发、智能监测预警及适应性农艺措施的综合体系,但现有研究在分子响应机制、动态过程量化及区域灾变模式整合上仍显不足。未来亟需突破“气候-作物-有害生物”系统的多维度耦合机制,融合多模态数据与人工智能,构建主动适应的新型数据驱动防治体系。

关键词: 气候变化, 作物病虫害, 温度, 降水, 二氧化碳

Abstract: Global climate change is systematically exacerbating the damage caused by crop pests and diseases through increased temperatures, altered precipitation regimes, and elevated atmospheric CO2 concentrations, posing severe challenges to national food security. This paper reviews the current status and characteristics of crop pest and disease occurrences in China, along with the mechanistic influences of climate change on their dynamics. It reveals the core processes, including accelerated pest development and northward expansion due to rising temperatures, bidirectional regulation of pests and diseases by altered precipitation patterns, and the indirect impact of elevated CO2 concentrations on pest and disease dynamics by changing the physiology of host plants. Furthermore, interactions among multiple factors (such as combined heat and humidity) are shown to amplify risks substantially. While a preliminary integrated framework has been established—encompassing stress-resistant crop breeding, development of green pesticides, smart monitoring and early warning systems, and adaptive agronomic practices—significant knowledge gaps remain. These include insufficient understanding of molecular response mechanisms, limited quantification of dynamic processes, and fragmented modeling of regional disaster patterns. Moving forward, it is imperative to advance research on the multi-dimensional coupling mechanisms within the “climate-crop-pest” system, integrate multi-modal data and artificial intelligence technologies, and develop a proactive, data-driven prevention and control system for enhanced resilience.

Key words: climate change, crop pests and diseases, temperature, precipitation, carbon dioxide

[1] 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议. 气候变化研究进展, 2024, 20: 764–772.
Zhou Z Y, Wang J H, Cao Y. Assessment of global climate change adaptation progress and related recommendations. Clim Change Res, 2024, 20: 764–772 (in Chinese with English abstract).

[2] Russo E, Domeisen D I V. Increasing intensity of extreme heatwaves: the crucial role of metrics. GRL, 2023, 50: e2023GL103540.

[3] World Meteorological Organization. State of the Global Climate 2024. Geneva: World Meteorological Organization, (2025-03-19) [2025-03-28]. https://wmo.int/sites/default/files/2025-03/WMO-1368-2024_en.pdf.

[4] 王岩, 王昊, 崔鹏, 等. 气候变化的灾害效应与科学挑战. 科学通报, 2024, 69: 286–300.
Wang Y, Wang H, Cui P, et al. Disaster effects of climate change and the associated scientific challenges. Chin Sci Bull, 2024, 69: 286–300 (in Chinese with English abstract).

[5] 张井勇, 何静, 张丽霞, 等. 面向碳中和的“一带一路”气候变化主要特征与灾害风险研究. 中国科学院院刊, 2023, 38: 1371–1386.
Zhang J Y, He J, Zhang L X, et al. Main climate change characteristics and disaster risks oriented towards carbon neutrality over the Belt and Road regions. Bull Chin Acad Sci, 2023, 38: 1371–1386 (in Chinese with English abstract).

[6] Chen M. Food security or climate action. Nat Clim Change, 2025, 15: 354–355.

[7] Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326–9331.

[8] Vogel E, Donat M G, Alexander L V, et al. The effects of climate extremes on global agricultural yields. Environ Res Lett, 2019, 14: 054010.

[9] 张庆萍, 顾雪. 挑战与应对: 气候变化与全球农业生产. 生态经济, 2025, 41(4): 5–8.
Zhang Q P, Gu X. Challenges and countermeasures: climate change and global agricultural production. Ecol Econ, 2025, 41(4): 5–8 (in Chinese).

[10] Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529: 84–87.

[11] Bibi F, Rahman A. An overview of climate change impacts on agriculture and their mitigation strategies. Agriculture, 2023, 13: 1508.

[12] 鲁军景, 孙雷刚, 黄文江, 等. 作物病虫害遥感监测和预测预警研究进展. 遥感技术与应用, 2019, 34(1): 21–32.
Lu J J, Sun L G, Huang W J, et al. Research progress in monitoring and forecasting of crop diseases and pests by remote sensing. Remote Sens Technol Appl, 2019, 34(1): 21–32 (in Chinese).

[13] Acheampong M A, Hill M P, Moore S D, et al. UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African Citrus orchards. Fungal Biol, 2020, 124: 304–310.

[14] Saijo Y, Loo E P. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol, 2020, 225: 87–104.

[15] Skendžić S, Zovko M, Živković I P, et al. The impact of climate change on agricultural insect pests. Insects, 2021, 12: 440.

[16] Barford E. Crop pests advancing with global warming. Nature, 2013: BFnature201313644.

[17] Ma C-S, Ma G, Pincebourde S. Survive a warming climate: insect responses to extreme high temperatures. Annu Rev Entomol, 2021, 66: 163–184.

[18] 刘杰, 卞悦, 张熠玚, 等. 2025年全国主要农作物重大病虫害发生趋势及其原因分析. 中国植保导刊, 2025, 45(2): 26–29.
Liu J, Bian Y, Zhang Y Y, et al. Occurrence trend and cause analysis of major pests and diseases of major crops in China in 2025. China Plant Prot, 2025, 45(2): 26–29 (in Chinese).

[19] Oliveira C M, Auad A M, Mendes S M, et al. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot, 2014, 56: 50–54.

[20] Sanjeev K, Shivnath D, Rakesh D R, et al. Plant protection: paramount to food security in India. Afr J Agric Res, 2016, 11: 595–606.

[21] Okonya J S, Ocimati W, Nduwayezu A, et al. Farmer reported pest and disease impacts on root, Tuber, and banana crops and livelihoods in Rwanda and Burundi. Sustainability, 2019, 11: 1592.

[22] 熊炜, 王红波, 张凯, 等. 我国重大病虫害防控综合技术研发与示范专项顶层布局及实施进展. 植物保护学报, 2024, 51: 741–751.
Xiong W, Wang H B, Zhang K, et al. Top design and progress in comprehensive technology research, development, and demonstration for the prevention and control of major pests and diseases in China. J Plant Prot, 2024, 51: 741–751 (in Chinese with English abstract).

[23] Wang C Z, Wang X H, Jin Z N, et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat Food, 2022, 3: 57–65.

[24] Bebber D P. Global warming and China’s crop pests. Nat Food, 2022, 3: 6–7.

[25] 郭永旺, 刘慧, 卓富彦, 等. 2024年全国主要农作物重大病虫害防治工作概述. 中国植保导刊, 2025, 45(1): 69–72.
Guo Y W, Liu H, Zhuo F Y, et al. Overview of the prevention and control of major pests and diseases of major crops in China in 2024. China Plant Prot, 2025, 45(1): 69–72 (in Chinese).

[26] 陈万权, 刘太国, 张云慧. 小麦主要病虫害综合防治理论与技术研究进展. 植物保护, 网络首发[2025-04-28], https://link.cnki.net/doi/10.16688/j.zwbh.2025131.
Chen W Q, Liu T G, Zhang Y H. Integrated management of diseases and insect pests on wheat. Plant Protection, Published online [2025-04-28], https://link.cnki.net/doi/10.16688/j.zwbh.2025131 (in Chinese with English abstract).

[27] 卓富彦, 陈学新, 夏玉先, 等. 2013–2022年我国水稻病虫害发生特点与绿色防控技术集成. 中国生物防治学报, 2024, 40: 1207–1213.
Zhuo F Y, Chen X X, Xia Y X, et al. The occurrence characteristics of rice diseases and insect pests and the integration of green control technology in China from 2013 to 2022. Chin J Biol Control, 2024, 40: 1207–1213 (in Chinese with English abstract).

[28] 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1): 1–11.
Wang Z Y, Wang X M. Current status and management strategies for corn pests and diseases in China. Plant Prot, 2019, 45(1): 1–11 (in Chinese with English abstract).

[29] 高玉林, 徐进, 刘宁, 等. 我国马铃薯病虫害发生现状与防控策略. 植物保护, 2019, 45(5): 106–111.
Gao Y L, Xu J, Liu N, et al. Current status and management strategies for potato insect pests and diseases in China. Plant Prot, 2019, 45(5): 106–111 (in Chinese with English abstract).

[30] 唐文颖, 卓富彦, 李向阳, 等. 1998–2023年黄河流域棉区主要病虫害发生演变分析. 棉花学报, 2025, 37: 119–130.

Tang W Y, Zhuo F Y, Li X Y, et al. Analysis of the occurrence and evolution of major diseases and insect pests in cotton planting area of Yellow River Basin from 1998 to 2023.Cotton Science, 2025, 37: 119–130 (in Chinese with English abstract).

[31] 农业农村部部署冬油菜病虫害防控工作. 中国植保导刊, 2023, 43(3): 98.
Ministry of agriculture and rural affairs deploys prevention and control of winter rape diseases and insect pests. China Plant Prot, 2023, 43(3): 98 (in Chinese).

[32] 叶文武, 刘万才, 王源超. 中国大豆病虫害发生现状及全程绿色防控技术研究进展. 植物保护学报, 2023, 50: 265–273.
Ye W W, Liu W C, Wang Y C. Occurrence status and whole-process green control technologies for soybean diseases and pests in China. J Plant Prot, 2023, 50: 265–273 (in Chinese with English abstract).

[33] 2024年全国农作物病虫害防控工作总结会在福建泉州召开. 中国植保导刊, 2024, 44(12): 106.
2024 national summary meeting of crop pests and diseases prevention and control was held in Quanzhou, Fujian. China Plant Prot, 2024, 44(12): 106 (in Chinese).

[34] 赵淼, 赵闯, 孙振中, 等. 近20年来我国农作物病虫害时空变化特征. 北京大学学报(自然科学版), 2015, 51: 965–975.
Zhao M, Zhao C, Sun Z Z, et al. Spatio-temporal changes of crop diseases and insect pests in China over the last two decades. Acta Sci Nat Univ Pekin, 2015, 51: 965–975 (in Chinese with English abstract).

[35] 中华人民共和国农业农村部. 中华人民共和国农业农村部公告第654号. (2023-03-07) [2025-05-22]. http://www.moa.gov.cn/govpublic/ZZYGLS/202303/t20230314_6422981.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Announcement No. 654 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. (2023-03-07) [2025-05-22]. http://www.moa.gov.cn/govpublic/ZZYGLS/202303/t20230314_6422981.htm (in Chinese).

[36] 廖娟, 陶婉琰, 臧英, 等. 农作物病虫害遥感监测关键技术研究进展与展望. 农业机械学报, 2023, 54(11): 1–19.
Liao J, Tao W Y, Zang Y, et al. Research progress and prospect of key technologies in crop disease and insect pest monitoring. Trans CSAM, 2023, 54(11): 1–19 (in Chinese with English abstract).

[37] Ma C S, Wang B X, Wang X J, et al. Crop pest responses to global changes in climate and land management. Nat Rev Earth Environ, 2025, 6: 264–283.

[38] Lami F, Boscutti F, Barbieri S, et al. Drought conditions, tillage regime and soil phosphorous modulate the incidence of weeds, pests and pathogens in arable crops. Sci Rep, 2025, 15: 24383.

[39] 刘四义, 韩燕来, 李培培, 等. 施肥管理措施对潮土和红壤作物氮素利用效率与病虫害发生的影响. 植物营养与肥料学报, 2023, 29: 1013–1024.
Liu S Y, Han Y L, Li P P, et al. Effects of fertilizer managements on crops nitrogen use efficiency and disease incidence in fluvo-aquic and red soils. Plant Nutr Fert Sci, 2023, 29: 1013–1024 (in Chinese with English abstract).

[40] 虞轶俊, 何建红, 施德, 等. 强化栽培稻田主要病虫害的发生规律研究. 浙江农业学报, 2009, 21: 618–622.
Yu Y J, He J H, Shi D, et al. Occurrence of the key diseases and insect pests in intensive rice system. Acta Agric Zhejiangensis, 2009, 21: 618–622 (in Chinese with English abstract).

[41] 霍治国, 王玫珏. 说说田间的病虫害. 中国气象报, 2020-03–13 (004).

Huo Z G, Wang M J. Discussing Field Diseases and Insect Pests. China Meteorological News, 2020-03–13 (004) (in Chinese).

[42] 王长燕, 赵景波, 李小燕. 华北地区气候暖干化的农业适应性对策研究. 干旱区地理, 2006, 29: 646–652.
Wang C Y, Zhao J B, Li X Y. Study on agricultural adaptation to warming and drying climate in North China. Arid Land Geogr, 2006, 29: 646–652 (in Chinese with English abstract).

[43] 李祎君, 王春乙, 赵蓓, 等. 气候变化对中国农业气象灾害与病虫害的影响. 农业工程学报, 2010, 26(增刊1): 263–271.
Li Y J, Wang C Y, Zhao B, et al. Effects of climate change on agricultural meteorological disaster and crop insects diseases. Trans CSAE, 2010, 26(S1): 263–271 (in Chinese with English abstract).

[44] 叶彩玲, 霍治国. 气候变暧对我国主要农作物病虫害发生趋势的影响. 中国农业信息快讯, 2001, 13(4): 9–10.
Ye C L, Huo Z G. Influence of climate warming on occurrence trend of main crop diseases and insect pests in China. China Agric Inf Bull, 2001, 13(4): 9–10 (in Chinese with English abstract).

[45] 王淑梅. 基于气象视角的农作物病虫害预测预报研究概况. 中国植保导刊, 2009, 29(12): 13–16.
Wang S M. Review of research on pests forecast based on weather. China Plant Prot, 2009, 29(12): 13–16 (in Chinese with English abstract).

[46] 王博妮, 景元书. 农作物病虫害气象条件预报方法研究进展. 江苏农业科学, 2009, 37(4): 25–27.
Wang B N, Jing Y S. Research progress on forecasting methods of meteorological conditions of crop diseases and insect pests. Jiangsu Agric Sci, 2009, 37(4): 25–27 (in Chinese with English abstract).

[47] 中华人民共和国农业农村部. 小麦“三病一虫”防控技术要点. 北京: 中华人民共和国农业农村部, (2024-03-28) [2025-09-07]. https://www.moa.gov.cn/ztzl/2024cg/jszd_29651/202403/t20240328_6452619.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Technical Guidelines for the Prevention and Control of “Three Diseases and One Pest” in Wheat. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2024-03-28) [2025-09-07]. https://www.moa.gov.cn/ztzl/2024cg/jszd_29651/202403/t20240328_6452619.htm (in Chinese)

[48] 周海波, 程登发, 陈巨莲. 小麦蚜虫田间调查及监测技术. 应用昆虫学报, 2014, 51: 853–858.
Zhou H B, Cheng D F, Chen J L. Techniques for field survey and monitoring of wheat aphids in China. Chin J Appl Entomol, 2014, 51: 853–858 (in Chinese with English abstract).

[49] Zhang K, Pan Q, Yu D Y, et al. Systemically modeling the relationship between climate change and wheat aphid abundance. Sci Total Environ, 2019, 674: 392–400.

[50] 于蕾, 陈琦, 李天奇, 等. 小麦蚜虫的发生特点与无害化控制技术. 种子科技, 2024, 42(6): 106–108.
Yu L, Chen Q, Li T Q, et al. Occurrence characteristics and harmless control techniques of wheat aphids. Seed Sci Technol, 2024, 42(6): 106–108 (in Chinese).

[51] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45(1): 1–6.
Ma Z H. Researches and control of wheat stripe rust in China. J Plant Prot, 2018, 45(1): 1–6 (in Chinese).

[52] Huang L S, Chen X Y, Dong Y Y, et al. Dynamic analysis of regional wheat stripe rust environmental suitability in China. Remote Sensing, 2023, 15: 2021.

[53] 夏腾飞, 熊子君. 小麦赤霉病及其防治策略概况与展望. 分子植物育种, 2021, 19: 6460–6467.
Xia T F, Xiong Z J. Overview and perspective on Fusarium head blight in wheat and its control strategies. Mol Plant Breed, 2021, 19: 6460–6467 (in Chinese with English abstract).

[54] 肖晶晶, 霍治国, 李娜, 等. 小麦赤霉病气象环境成因研究进展. 自然灾害学报, 2011, 20(2): 146–152.
Xiao J J, Huo Z G, Li N, et al. Progress in research on meteorological conditions of wheat scab. J Nat Disasters, 2011, 20(2): 146–152 (in Chinese with English abstract).

[55] 中华人民共和国农业农村部. 2024年水稻重大病虫害防控技术方案. 北京: 中华人民共和国农业农村部, (2024-03-08) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450966.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2024 Technical Solution for the Control of Major Rice Diseases and Pests. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2024-03-08) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450966.htm (in Chinese)

[56] 陆明红, 周丽丽, 尹丽, 等. 2019年我国稻飞虱发生特点及原因分析. 中国植保导刊, 2020, 40(5): 52–57.
Lu M H, Zhou L L, Yin L, et al. Occurrence characteristics and cause analysis of rice planthopper in China in 2019. China Plant Prot, 2020, 40(5): 52–57 (in Chinese with English abstract).

[57] 吕冬红, 王海青, 刘素萍, 等. 水稻褐飞虱发生程度气象预报方法的研究. 安徽农业科学, 2009, 37: 668–671.
Lyu D H, Wang H Q, Liu S P, et al. Research on the weather forecasting method of rice brown planthopper occurrence. J Anhui Agric Sci, 2009, 37: 668–671 (in Chinese with English abstract).

[58] 包云轩, 曹云, 谢晓金, 等. 中国稻纵卷叶螟发生特点及北迁的大气背景. 生态学报, 2015, 35: 3519–3533.
Bao Y X, Cao Y, Xie X J, et al. Migration pattern of rice leaf roller and impact of atmospheric conditions on a heavy migration event in China. Acta Ecol Sin, 2015, 35: 3519–3533 (in Chinese with English abstract).

[59] 叶恭银, 方琦, 徐红星, 等. 我国水稻螟虫发生及治理研究进展. 植物保护, 2023, 49(5): 167–180.
Ye G Y, Fang Q, Xu H X, et al. Research advances on the occurrence, damage and management of rice stem borers in China. Plant Prot, 2023, 49(5): 167–180 (in Chinese with English abstract).

[60] 太红坤, 顾中量, 段鸿娟, 等. 云南芒市二化螟种群数量变动及气候因子的影响分析. 中国植保导刊, 2014, 34(3): 42–45.
Tai H K, Gu Z L, Duan H J, et al. Quantitative change of Chilo suppressalis population in Mangshi, Yunnan Province and the influence of climate factors. China Plant Prot, 2014, 34(3): 42–45 (in Chinese with English abstract).

[61] 刘天华, 白姣姣, 吕东平. 农业气象因素影响稻瘟病发生分子机制初探. 中国生态农业学报, 2016, 24: 1–7.
Liu T H, Bai J J, Lyu D P. A preliminary study on the effect of agro-meteorological factors on molecular mechanism of rice blast occurrence. Chin J Eco Agric, 2016, 24: 1–7 (in Chinese with English abstract).

[62] 张彤, 周国辉. 南方水稻黑条矮缩病研究进展. 植物保护学报, 2017, 44: 896–904.
Zhang T, Zhou G H. Advances in the researches on the southern rice black-streaked dwarf disease. J Plant Prot, 2017, 44: 896–904 (in Chinese with English abstract).

[63] 刘万才, 陆明红, 黄冲, 等. 南方水稻黑条矮缩病预测预报技术初探. 中国植保导刊, 2014, 34(6): 40–45.
Liu W C, Lu M H, Huang C, et al. Preliminary study on forecast techniques of southern rice black-streaked dwarf disease. China Plant Prot, 2014, 34(6): 40–45 (in Chinese).

[64] 中华人民共和国农业农村部. 2024年玉米重大病虫害防控技术方案. 北京: 中华人民共和国农业农村部, (2024-03-08) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450963.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2024 Technical Solution for the Control of Major Corn Diseases and Pests. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2024-03-08) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450963.htm (in Chinese).

[65] 杨慧中, 涂小云, 夏勤雯, 等. 亚洲玉米螟生物学特性的研究. 江西农业大学学报, 2014, 36: 91–96.
Yang H Z, Tu X Y, Xia Q W, et al. Biology of the Asian corn borer Ostrinia furnacalis. Acta Agric Univ Jiangxiensis, 2014, 36: 91–96 (in Chinese with English abstract).

[66] 何丽娟, 张艳芳, 徐丽. 浅析玉米螟虫的防治与气象因子的关系. 农业与技术, 2016, 36(17): 124–125.
He L J, Zhang Y F, Xu L. Analysis on the relationship between prevention and control of corn borer and meteorological factors. Agric Technol, 2016, 36(17): 124–125 (in Chinese with English abstract).

[67] 刘杰, 姜玉英, 曾娟, 等. 2015年我国玉米南方锈病重发特点和原因分析. 中国植保导刊, 2016, 36(5): 44–47.
Liu J, Jiang Y Y, Zeng J, et al. Analysis on the characteristics and causes of maize southern rust in China in 2015. China Plant Prot, 2016, 36(5): 44–47 (in Chinese).

[68] 中华人民共和国农业农村部. 2023年马铃薯重大病虫害防控技术方案. 北京: 中华人民共和国农业农村部, (2023-02-28) [2025-09-07]. https://www.moa.gov.cn/ztzl/2023cg/jszd_29356/202302/P020230228395603536186.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2023 Technical Solution for the Control of Major Potato Diseases and Pests. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2023-02-28) [2025-09-07]. https://www.moa.gov.cn/ztzl/2023cg/jszd_29356/202302/P020230228395603536186 (in Chinese).

[69] 黄冲, 刘万才. 近几年我国马铃薯晚疫病流行特点分析与监测建议. 植物保护, 2016, 42(5): 142–147.
Huang C, Liu W C. Occurrence characteristics and monitoring advice of potato late blight in China in recent years. Plant Prot, 2016, 42(5): 142–147 (in Chinese with English abstract).

[70] 池再香, 卢瑶, 肖钧, 等. 气象因子对马铃薯晚疫病发生规律的影响. 贵州农业科学, 2009, 37(9): 69–71.
Chi Z X, Lu Y, Xiao J, et al. Effect of meteorological factors on occurrence regulation of potato late blight. Guizhou Agric Sci, 2009, 37(9): 69–71 (in Chinese with English abstract).

[71] 中华人民共和国农业农村部. 2023年油菜主要病虫害防控技术方案. 北京: 中华人民共和国农业农村部, (2023-03-01) [2025-09-07]. https://www.moa.gov.cn/ztzl/ddymdzfhjs/jszd_29063/202303/t20230301_6421922.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2023 Technical Solution for the Control of Major Rapeseed Diseases and Pests. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2023-03-01) [2025-09-07]. https://www.moa.gov.cn/ztzl/ddymdzfhjs/jszd_29063/202303/t20230301_6421922.htm (in Chinese).

[72] 高雪, 唐凯健, 王利华, 等. 我国油菜菌核病综合治理研究进展. 中国植保导刊, 2009, 29(6): 15–18.
Gao X, Tang K J, Wang L H, et al. Research progress of Sclerotinia sclerotiorum IPM in China. China Plant Prot, 2009, 29(6): 15–18 (in Chinese with English abstract).

[73] 秦虎强, 高小宁, 韩青梅, 等. 油菜菌核病发生流行与菌源量、气候因子关系分析及病情预测模型的建立. 植物保护学报, 2018, 45: 496–502.
Qin H Q, Gao X N, Han Q M, et al. Effects of inoculum density and environmental factors on the epidemics of rape Sclerotinia rot and establishment of a predicative model. J Plant Prot, 2018, 45: 496–502 (in Chinese with English abstract).

[74] 中华人民共和国农业农村部. 2024年大豆病虫害防控技术方案. 北京: 中华人民共和国农业农村部, (2024-03-12) [2025-09-08]. https://www.moa.gov.cn/xw/zxfb/202403/t20240312_6451170.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2024 Technical Solution for the Control of Soybean Diseases and Pests. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2024-03-12) [2025-09-08]. https://www.moa.gov.cn/xw/zxfb/202403/t20240312_6451170.htm (in Chinese).

[75] 叶文武, 郑小波, 王源超. 大豆根腐病监测与防控关键技术研究进展. 大豆科学, 2020, 39: 804–809.
Ye W W, Zheng X B, Wang Y C. Research progress on key technologies for monitoring and control of soybean root rot. Soybean Sci, 2020, 39: 804–809 (in Chinese with English abstract).

[76] 付春旭. 大豆根腐病的发生及其综合防治策略. 大豆通报, 2006, 84(5): 13–15.
Fu C X. Occurrence of soybean root rot disease and its comprehensive control strategy. Soybean Bull, 2006, 84(5): 13–15 (in Chinese with English abstract).

[77] 中华人民共和国农业农村部. 2021年农区蝗虫防控技术方案. 北京: 中华人民共和国农业农村部, (2021-03-11) [2025-09-08]. https://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363449.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2021 Technical Solution for the Control of Agricultural Locusts. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2021-03-11) [2025-09-08]. https://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363449.htm (in Chinese).

[78] 黄冲, 刘万才. 近10年我国飞蝗发生特点分析与监控建议. 中国植保导刊, 2016, 36(12): 49–54.
Huang C, Liu W C. Analysis on the occurrence characteristics of Locusta migratoria manilensis in China in recent 10 years and monitoring suggestions. China Plant Prot, 2016, 36(12): 49–54 (in Chinese).

[79] 吴瑞芬, 霍治国, 卢志光, 等. 蝗虫发生的气象环境成因研究概述. 自然灾害学报, 2005, 14(3): 66–73.
Wu R F, Huo Z G, Lu Z G, et al. Summarization of research on meteorological environment affecting occurrence of locusts. J Nat Disasters, 2005, 14(3): 66–73 (in Chinese with English abstract).

[80] 中华人民共和国农业农村部. 2014年粘虫防控技术方案. 北京: 中华人民共和国农业农村部, (2014-03-25) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/2014nszd/201403/t20140325_3828240.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2014 Technical Solution for the Control of Armyworm. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2014-03-25) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/2014nszd/201403/t20140325_3828240.htm (in Chinese).

[81] 江幸福, 张蕾, 程云霞, 等. 我国粘虫研究现状及发展趋势. 应用昆虫学报, 2014, 51: 881–889.
Jiang X F, Zhang L, Cheng Y X, et al. Current status and trends in research on the oriental armyworm, Mythimna separata (Walker) in China. Chin J Appl Entomol, 2014, 51: 881–889 (in Chinese with English abstract).

[82] 江幸福, 张蕾, 程云霞, 等. 我国粘虫发生危害新特点及趋势分析. 应用昆虫学报, 2014, 51: 1444–1449.
Jiang X F, Zhang L, Cheng Y X, et al. Novel features, occurrence trends and economic impact of the oriental armyworm, Mythimna separata (Walker) in China. Chin J Appl Entomol, 2014, 51: 1444–1449 (in Chinese with English abstract).

[83] 中华人民共和国农业农村部. 2021年草地贪夜蛾防控技术方案. 北京: 中华人民共和国农业农村部, (2021-03-11) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363448.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2021 Technical Solution for the Control of Fall Armyworm. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2021-03-11) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363448.htm (in Chinese).

[84] 李建春, 刘杰, 齐国君, 等. 我国草地贪夜蛾北迁格局及其虫源衔接关系. 应用昆虫学报, 2023, 60: 1039–1051.
Li J C, Liu J, Qi G J, et al. The northward migration pattern of the fall armyworm in China from 2019 to 2022. Chin J Appl Entomol, 2023, 60: 1039–1051 (in Chinese with English abstract).

[85] Paudel Timilsena B, Niassy S, Kimathi E, et al. Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci Rep, 2022, 12: 539.

[86] 中华人民共和国农业农村部. 2021年草地螟防控技术方案. 北京: 中华人民共和国农业农村部, (2021-03-11) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363450.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2021 Technical Solution for the Control of Meadow Moth. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2021-03-11) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/2021/202103/t20210311_6363450.htm (in Chinese).

[87] 张蕾, 江幸福. 我国草地螟发生规律和监测治理技术研究现状与发展趋势. 应用昆虫学报, 2023, 60, 1654–1668.

Zhang L, Jiang X F. Current state of research on the beet webworm, Loxostege sticticalis (Linnaeus) in China. Chin J Appl Entomol, 2023, 60, 1654–1668 (in Chinese with English abstract).

[88] 唐继洪. 草地螟对温湿度变异的适应与反应. 中国农业科学院博士学位论文, 北京, 2016.
Tang J H. Responses and Adaptation of the Beet Webworm, Loxostege sticticalis (Lepidoptera: Carambidiae) to the Variations in Temperature and Humidity. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).

[89] 中华人民共和国农业农村部. 2024年蝗虫防控技术方案. 北京: 中华人民共和国农业农村部, (2024-03-26) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240326_6452463.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2024 Technical Solution for the Control of Locusts. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, (2024-03-26) [2025-09-07]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240326_6452463.htm (in Chinese).

[90] 路虹, 石宝才, 宫亚军, 等. 蔬菜常见蓟马的识别与防治. 中国蔬菜, 2006(11): 53–55.
Lu H, Shi B C, Gong Y J, et al. dentification and control of common Thrips in vegetables. China Veg, 2006(11): 53–55 (in Chinese).

[91] Chaloner T M, Gurr S J, Bebber D P. Plant pathogen infection risk tracks global crop yields under climate change. Nat Clim Change, 2021, 11: 710–715.

[92] Shahzad A, Ullah S, Dar A A, et al. Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Environ Sci Pollut Res Int, 2021, 28: 14211–14232.

[93] Kocmánková E, Trnka M, Juroch J, et al. Impact of climate change on the occurrence and activity of harmful organisms. Plant Prot Sci, 2009, 45: S48–S52.

[94] Bale J S, Masters G J, Hodkinson I D, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol, 2002, 8: 1–16.

[95] Alla S, Cherqui A, Kaiser L, et al. Effects of potato plants expressing the nptII-gus fusion marker genes on reproduction, longevity, and host-finding of the peach-potato aphid, Myzus persicae. Entomol Exp Appl, 2003, 106: 95–102.

[96] Gillooly J F, Charnov E L, West G B, et al. Effects of size and temperature on developmental time. Nature, 2002, 417: 70–73.

[97] 周平. 全球气候变化对我国农业生产的可能影响与对策. 云南农业大学学报, 2001, 16(1): 1–4.
Zhou P. The possible influence of global climate changes on agricultural production in China and countermeasures. J Yunnan Agric Univ, 2001, 16(1): 1–4 (in Chinese with English abstract).

[98] 丁新华, 王小武, 付开赟, 等. 新疆亚洲玉米螟暴发成灾驱动机制分析及其治理对策. 植物保护, 2024, 50(3): 24–36.
Ding X H, Wang X W, Fu K Y, et al. Analysis on driving mechanism of the outbreak of Asian corn borer and its management strategies in Xinjiang. Plant Prot, 2024, 50(3): 24–36 (in Chinese with English abstract).

[99] 高晋丽, 杨丽莉, 刘瑶, 等. 亚洲玉米螟发生和防治研究进展. 中国植保导刊, 2024, 44(10): 22–28.
Gao J L, Yang L L, Liu Y, et al. Research progress on the occurrence and control of Asian corn borer (Ostrinia furnacalis). China Plant Prot, 2024, 44(10): 22–28 (in Chinese with English abstract).

[100] 陈立涛, 王永芳, 马继芳, 等. 夏季高温对冀南地区棉铃虫和玉米螟蛾量影响的观察. 中国植保导刊, 2019, 39(12): 43–46.
Chen L T, Wang Y F, Ma J F, et al. Observation on the effect of high temperature in summer on the population of cotton bollworm and corn borer in southern Hebei province. China Plant Prot, 2019, 39(12): 43–46 (in Chinese).

[101] Nagaraju M T, Mohan K M, Keerthi M C, et al. Effect of temperature on the biological parameters of pink bollworm, Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae). Sci Rep, 2024, 14: 15047.

[102] Daniel PBebber, Mark ATRamotowski, Sarah JGurr, 等. 农作物病虫害在全球变暖中向极地扩散. 中国植保导刊, 2017, 37(3): 80–86.
Pbebber D, Atramotowski M, Jgurr S, et al. Crop pests and pathogens move polewards in awarming world. China Plant Prot, 2017, 37(3): 80–86 (in Chinese).

[103] Tougeron K, Damien M, Le Lann C, et al. Rapid responses of winter aphid-parasitoid communities to climate warming. Front Ecol Evol, 2018, 6: 173.

[104] Burc E, Girard-Tercieux C, Metz M, et al. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun, 2025, 16: 827.

[105] 陈海新, 张国林, 徐金妹, 等. 气候变暖对农作物病虫害发生的影响与对策. 广东农业科学, 2009, 36(1): 67–67.
Chen H X, Zhang G L, Xu J M, et al. Influence of climate warming on the occurrence of crop diseases and pests and countermeasures. Guangdong Agric Sci, 2009, 36(1): 67–67 (in Chinese).

[106] Bebber D P, Ramotowski M A T, Gurr S J. Crop pests and pathogens move polewards in a warming world. Nat Clim Change, 2013, 3: 985–988.

[107] 曾娟, 姜玉英, 霍治国. 小麦重大病虫害发生流行的气候影响评价. 科技导报, 2011, 29(20): 68–72.
Zeng J, Jiang Y Y, Huo Z G. An assessment of the impact of climatics condition on wheat pests outbreak and diseases spread. Sci Technol Rev, 2011, 29(20): 68–72 (in Chinese with English abstract).

[108] 孔令斌, 林伟, 李志红, 等. 气候因子对橘小实蝇生长发育及地理分布的影响. 昆虫知识, 2008, 45: 528–531.
Kong L B, Lin W, Li Z H, et al. Effects of climatic factors on the growth and geographical distribution of Oriental fruit fly, Bactrocera dorsalis. Entomol Knowl, 2008, 45(4): 528–531 (in Chinese with English abstract).

[109] Zhao Q, Li H P, Chen C, et al. Potential global distribution of Paracoccus marginatus, under climate change conditions, using MaxEnt. Insects, 2024, 15: 98.

[110] Hong J, Lee M, Kim Y, et al. Potential range shift of a long-distance migratory rice pest, Nilaparvata lugens, under climate change. Sci Rep, 2024, 14: 11531.

[111] Awmack C S, Leather S R. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol, 2002, 47: 817–844.

[112] Wang Y, Yan J, Sun J R, et al. Effects of field simulated warming on feeding behavior of Sitobion avenae (Fabricius) and host defense systems. Entomologia, 2021, 41: 567–578.

[113] Ma L J, Qiao J X, Kong X Y, et al. Effect of low temperature and wheat winter-hardiness on survival of Puccinia striiformis f. sp. tritici under controlled conditions. PLoS One, 2015, 10: e0130691.

[114] Cohen S P, Leach J E. High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr Opin Plant Biol, 2020, 56: 235–241.

[115] Kumar D, Mukhopadhyay R. Climate change and plant pathogens: Understanding dynamics, risks and mitigation strategies. Plant Pathol, 2025, 74: 59–68.

[116] Singh B K, Delgado-Baquerizo M, Egidi E, et al. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol, 2023, 21: 640–656.

[117] Zhang X, Halder J, White R P, et al. Climate change increases risk of Fusarium ear blight on wheat in Central China. Ann Appl Biol, 2014, 164: 384–395.

[118] Delgado-Baquerizo M, Guerra C A, Cano-Díaz C, et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Change, 2020, 10: 550–554.

[119] Fisher M C, Gurr S J, Cuomo C A, et al. Threats posed by the fungal Kingdom to humans, wildlife, and agriculture. mBio, 2020, 11: e00449–e00420.

[120] Parikka P, Hakala K, Tiilikkala K. Expected shifts in Fusarium species' composition on cereal grain in Northern Europe due to climatic change. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2012, 29: 1543–1555.

[121] Walter S, Ali S, Kemen E, et al. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecol Evol, 2016, 6: 2790–2804.

[122] Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant, 2015, 8: 521–539.

[123] Cheng C, Gao X Q, Feng B M, et al. Plant immune response to pathogens differs with changing temperatures. Nat Commun, 2013, 4: 2530.

[124] Deutsch C A, Tewksbury J J, Huey R B, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA, 2008, 105: 6668–6672.

[125] Deutsch C A, Tewksbury J J, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate. Science, 2018, 361: 916–919.

[126] Zhan J S, Ericson L, Burdon J J. Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association. Glob Change Biol, 2018, 24: 3526–3536.

[127] Whitfield A E, Falk B W, Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology, 2015, 479/480: 278–289.

[128] Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427: 145–148.

[129] Velásquez A C, Castroverde C D M, He S Y. Plant–pathogen warfare under changing climate conditions. Curr Biol, 2018, 28: R619–R634.

[130] Lehmann P, Ammunét T, Barton M, et al. Complex responses of global insect pests to climate warming. Front Ecol Environ, 2020, 18: 141–150.

[131] Staley J T, Hodgson C J, Mortimer S R, et al. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur J Soil Biol, 2007, 43: 189–198.

[132] 王鹤龄, 张强, 王润元, 等. 增温和降水变化对半干旱区春小麦产量、品质和病虫害影响. 第31届中国气象学会年会S5 干旱灾害风险评估与防控. 北京, 2014. pp 196–212.
Wang H, Zhang Q, Wang R Y, et al. Effects of Warming and Precipitation Changes on Yield, Quality, and Diseases and Pests of Spring Wheat in Semi-Arid Regions. Proceedings of the 31st Annual Meeting of the Chinese Meteorological Society, S5: Drought Disaster Risk Assessment and Prevention. Beijing, 2014. pp 196–212 (in Chinese with English abstract) .

[133] 谢子正, 王晔青, 王国荣, 等. 2020年浙江省稻飞虱发生特点及原因分析. 中国植保导刊, 2021, 41(6): 40–43.
Xie Z Z, Wang Y Q, Wang G R, et al. Occurrence characteristics and causes of rice planthopper in Zhejiang Province in 2020. China Plant Prot, 2021, 41(6): 40–43 (in Chinese).

[134] Rashed A, van Herk W G. Pest elaterids of North America: new insights and opportunities for management. Annu Rev Entomol, 2024, 69: 1–20.

[135] Wang L Y, Hui C, Sandhu H S, et al. Population dynamics and associated factors of cereal aphids and armyworms under global change. Sci Rep, 2015, 5: 18801.

[136] 霍治国, 李茂松, 王丽, 等. 降水变化对中国农作物病虫害的影响. 中国农业科学, 2012, 45: 1935–1945.
Huo Z G, Li M S, Wang L, et al. Impacts of precipitation variations on crop diseases and pests in China. Sci Agric Sin, 2012, 45: 1935–1945 (in Chinese with English abstract).

[137] 舒启豪, 孔艳艳, 罗坤, 等. 干旱与Cd双重胁迫对土壤-小麦-蚜虫系统Cd转移规律影响的研究. 中国生态农业学报(中英文), 2019, 27: 1656–1662.
Shu Q H, Kong Y Y, Luo K, et al. Cadmium transfer in the ecosystem of soil-wheat-aphid under dual stress of cadmium and drought. Chin J Eco- Agric, 2019, 27: 1656–1662 (in Chinese with English abstract).

[138] 文礼章, 文意纯, 诸凤丹, 等. 我国甜菜夜蛾间歇性暴发频度的大尺度地理差异及其成因分析. 应用昆虫学报, 2014, 51: 232–247.
Wen L Z, Wen Y C, Zhu F D, et al. Large-scale geographical variation and cause analysis on the frequency of intermittent outbreak of the beet armyworm, Spodoptera exigua. Chin J Appl Entomol, 2014, 51: 232–247 (in Chinese with English abstract).

[139] 王琪珍, 卜庆雷, 王承军, 等. 莱芜市气候变化特征及其对农业生产的影响. 现代农业科技, 2009, (15): 295–297.
Wang Q Z, Bu Q L, Wang C J, et al. Characteristics of Climate Change in Laiwu City and Its Impact on Agricultural Production. Xiandai Nongye Keji, 2009, (15): 295–297 (in Chinese).

[140] Ximénez-Embún M G, Glas J J, Ortego F, et al. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses. Exp Appl Acarol, 2017, 73: 297–315.

[141] Harvey J A, Tougeron K, Gols R, et al. Scientists’ warning on climate change and insects. Ecological Monographs, 2023, (93): e1553.

[142] Jiang X F, Luo L Z, Zhang L, et al. Regulation of migration in Mythimna separata (Walker) in China: a review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environ Entomol, 2011, 40: 516–533.

[143] 白先达, 黄超艳, 唐广田, 等. 气象条件对稻纵卷叶螟迁飞的影响分析. 中国农学通报, 2010, 26(21): 262–267.
Bai X D, Huang C Y, Tang G T, et al. Analysis on meteorological conditions effecting on migration of the rice leaf roller. Chin Agric Sci Bull, 2010, 26(21): 262–267 (in Chinese with English abstract).

[144] 白先达, 黄超艳, 唐广田, 等. 桂林地区稻纵卷叶螟迁飞气象条件分析. 广东农业科学, 2011, 38(2): 69–72.
Bai X D, Huang C Y, Tang G T, et al. Analysis on meteorological conditions for migration of the rice leaf roller in Guilin region. Guangdong Agric Sci, 2011, 38(2): 69–72 (in Chinese with English abstract).

[145] Chen H, Chang X L, Wang Y P, et al. The early northward migration of the white-backed planthopper (Sogatella furcifera) is often hindered by heavy precipitation in Southern China during the preflood season in May and June. Insects, 2019, 10: 158.

[146] Wainwright C E, Volponi S N, Stepanian P M, et al. Using cloud radar to investigate the effect of rainfall on migratory insect flight. Meth Ecol Evol, 2023, 14: 655–668.

[147] Lyu H, Zhai M Y, Zeng J, et al. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest. Glob Chang Biol, 2023, 29: 2655–2668.

[148] Dechesne A, Wang G, Gülez G, et al. Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci USA, 2010, 107: 14369–14372.

[149] 韩月泠, 王丹, 李自博, 等. 人参核盘菌菌核的菌丝型萌发特性研究. 中国植保导刊, 2019, 39(3): 19–22.
Han Y L, Wang D, Li Z B, et al. Study on myceliogenic germination of Sclerotia of Sclerotinia ginseng. China Plant Prot, 2019, 39(3): 19–22 (in Chinese with English abstract).

[150] Granke L L, Hausbeck M K. Effects of temperature, humidity, and wounding on development of Phytophthora rot of cucumber fruit. Plant Dis, 2010, 94: 1417–1424.

[151] 姚晓红, 许彦平, 姚新琪. 气候变暖对马铃薯晚疫病发生发展的影响. 安徽农业科学, 2010, 38: 11315–11317.
Yao X H, Xu Y P, Yao X Q. Effects of climate warming on the occurrence and development of potato late blight. J Anhui Agric Sci, 2010, 38: 11315–11317 (in Chinese with English abstract).

[152] 李亚红, 霍超, 曹继芬, 等. 云南省不同季节马铃薯晚疫病发生流行及侵染规律. 西南农业学报, 2022, 35: 2046–2053.
Li Y H, Huo C, Cao J F, et al. Epidemics and infection characteristics of potato late blight in different seasons in Yunnan Province. Southwest China J Agric Sci, 2022, 35: 2046–2053 (in Chinese with English abstract).

[153] Rai A, Irulappan V, Senthil-Kumar M. Dry root rot of chickpea: a disease favored by drought. Plant Dis, 2022, 106: 346–356.

[154] Sun Z H, Feng Z K, Ding Y L, et al. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Mol Plant, 2022, 15: 1192–1210.

[155] Niinemets Ü. Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol, 2016, 36: 129–132.

[156] Bondaruk V F, Xu C, Wilfahrt P, et al. Aridity modulates grassland biomass responses to combined drought and nutrient addition. Nat Ecol Evol, 2025, 9: 937–946.

[157] Desprez-Loustau M L, Marçais B, Nageleisen L M, et al. Interactive effects of drought and pathogens in forest trees. Ann For Sci, 2006, 63: 597–612.

[158] Clarkson J P, Fawcett L, Anthony S G, et al. A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS One, 2014, 9: e94049.

[159] Bidzinski P, Ballini E, Ducasse A, et al. Transcriptional basis of drought-induced susceptibility to the rice blast fungus Magnaporthe oryzae. Front Plant Sci, 2016, 7: 1558.

[160] Wakelin S A, Gomez-Gallego M, Jones E, et al. Climate change induced drought impacts on plant diseases in New Zealand. Australas Plant Pathol, 2018, 47: 101–114.

[161] Choi H K, Iandolino A, da Silva F G, et al. Water deficit modulates the response of Vitis vinifera to the pierce’s disease Pathogen Xylella fastidiosa. Mol Plant-Micr Interact, 2013, 26: 643–657.

[162] Jones, R. A. C. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2012, 7: 1–15.

[163] Alli Y A, Oladoye P O, Ejeromedoghene O, et al. Nanomaterials as catalysts for CO2 transformation into value-added products: a review. Sci Total Environ, 2023, 868: 161547.

[164] Chakraborty S, Luck J, Hollaway G, et al. Impacts of global change on diseases of agricultural crops and forest trees. CABI Rev, 2008. pp 1–15.

[165] Facey S L, Ellsworth D S, Staley J T, et al. Upsetting the order: how climate and atmospheric change affects herbivore-enemy interactions. Curr Opin Insect Sci, 2014, 5: 66–74.

[166] Teawkul P, Hwang S Y. Carbon dioxide- and temperature-mediated changes in plant defensive compounds alter food utilization of herbivores. J Appl Entomol, 2019, 143: 289–298.

[167] 张广珠. 大气二氧化碳、臭氧浓度的升高对两种蚜虫取食行为的影响. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2009.
Zhang G Z. The Effect of Elevated CO2 and O3 on the Feeding Behabior of Two Aphids. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract).

[168] Liu X W, Liu H, Wang Y H, et al. Elevated CO2 aggravates invasive thrip damage by altering its host plant nutrient and secondary metabolism. Environ Pollut, 2022, 295: 118736.

[169] 王艳辉, 王晓辉, 刘晓微, 等. 大气CO2浓度升高条件下水稻营养成分和抗虫物质的变化及其对褐飞虱生长发育与繁殖的影响. 植物保护学报, 2022, 49: 767–774.
Wang Y H, Wang X H, Liu X W, et al. Effects of elevated CO2 on the nutrients and insect-resistant substances of rice and the cascading effects on the growth, development and reproduction of the brown planthopper Nilaparvata lugens. J Plant Prot, 2022, 49: 767–774 (in Chinese with English abstract).

[170] Chen Q Y, Chang H T, Ma B W, et al. Carbon dioxide drives oviposition in Helicoverpa armigera. Natl Sci Rev, 2025, 12: nwaf270.

[171] 李保平, 郭庆, 孟玲. CO2浓度升高对稻纵卷叶螟生长发育、繁殖和食物利用效率的影响. 中国农业科学, 2013, 46: 4464–4470.
Li B P, Guo Q, Meng L. Effects of elevated CO2 concentration on development, reproduction and food utilization of the Cnaphalocrocis medinalis guenée (Lepidoptera: Pyralidae). Sci Agric Sin, 2013, 46: 4464–4470 (in Chinese with English abstract).

[172] Johnson S N, Barton A T, Clark K E, et al. Elevated atmospheric carbon dioxide impairs the performance of root-feeding vine weevils by modifying root growth and secondary metabolites. Glob Change Biol, 2011, 17: 688–695.

[173] Li C C, Sun Q, Gou Y P, et al. Long-term effect of elevated CO2 on the development and nutrition contents of the pea aphid (Acyrthosiphon pisum). Front Physiol, 2021, 12: 688220.

[174] Zhang T, Wang C, Jiang F Y, et al. Elevated CO2 affects interspecific competition between the invasive Thrips Frankliniella occidentalis and native Thrips species. J Pest Sci, 2024, 97: 1605–1621.

[175] Zhou Y L, Van Leeuwen S K, Pieterse C M J, et al. Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. Eur J Plant Pathol, 2019, 154: 31–42.

[176] Zhang S, Li X, Sun Z H, et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. J Exp Bot, 2015, 66: 1951–1963.

[177] Zhou Y L, Van Leeuwen S K, Pieterse C M J, et al. Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. Eur J Plant Pathol, 2019, 154: 31–42.

[178] Li X, Sun Z H, Shao S J, et al. Tomato-Pseudomonas syringae interactions under elevated CO₂ concentration: the role of stomata. J Exp Bot, 2015, 66: 307–316.

[179] Zhou Y L, Vroegop-Vos I, Schuurink R C, et al. Atmospheric CO2 alters resistance of Arabidopsis to Pseudomonas syringae by affecting abscisic acid accumulation and stomatal responsiveness to coronatine. Front Plant Sci, 2017, 8: 700.

[180] Matros A, Amme S, Kettig B, et al. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell Environ, 2006, 29: 126–137.

[181] Ode P J, Johnson S N, Moore B D. Atmospheric change and induced plant secondary metabolites - are we reshaping the building blocks of multi-trophic interactions. Curr Opin Insect Sci, 2014, 5: 57–65.

[182] Váry Z, Mullins E, McElwain J C, et al. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob Change Biol, 2015, 21: 2661–2669.

[183] Trębicki P, Vandegeer R K, Bosque-Pérez N A, et al. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci Rep, 2016, 6: 22785.

[184] Fuhrer J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ, 2003, 97: 1–20.

[185] 韩国菲, 王海光, 黄冲, 等. CO2浓度升高对小麦条锈病流行组分的影响. 植物保护学报, 2010, 37: 471–472.
Han G F, Wang H G, Huang C, et al. Effects of elevated CO2 on infection components of wheat stripe rust. J Plant Prot, 2010, 37: 471–472 (in Chinese).

[186] Khan M R, Rizvi T F. Effect of elevated levels of CO2 on powdery mildew development in five cucurbit species. Sci Rep, 2020, 10: 4986.

[187] 刘俊稚, 葛亚明, Pugliese Massimo, 等. CO2和温度升高情况下白粉菌侵染对西葫芦生长特性的影响. 生态学报, 2011, 31: 491–497.
Liu J Z, Ge Y M, Massimo P, et al. Effects of powdery mildew infection on zucchini growth under elevated CO2 and temperature. Acta Ecol Sin, 2011, 31: 491–497 (in Chinese with English abstract).

[188] Bredow M, Khwanbua E, Sartor Chicowski A, et al. Elevated CO2 alters soybean physiology and defense responses, and has disparate effects on susceptibility to diverse microbial pathogens. New Phytol, 2025, 246: 2718–2737.

[189] Roussin-Léveillée C, Rossi C A M, Castroverde C D M, et al. The plant disease triangle facing climate change: a molecular perspective. Trends Plant Sci, 2024, 29: 895–914.

[190] Pequeno D N L, Ferreira T B, Fernandes J M C, et al. Production vulnerability to wheat blast disease under climate change. Nat Clim Change, 2024, 14: 178–183.

[191] Islam M T, Gupta D R, Hossain A, et al. Wheat blast: a new threat to food security. Phytopathology Research, 2020, 2: 28.

[192] Galvañ A, Boughalleb-M’Hamdi N, Benfradj N, et al. Climate suitability of the Mediterranean Basin for Citrus black spot disease (Phyllosticta citricarpa) based on a generic infection model. Scientific Reports, 2022, 12: 19876.

[193] Newton A. Aphid outbreaks. Nature Clim Change, 2008, 1: 3.

[194] Zhang Y J, Wan Y Q, Wang C B, et al. Potential distribution of three invasive agricultural pests in China under climate change. Sci Rep, 2024, 14: 13672.

[195] Chen J H, Jiang K, Li Y F, et al. Climate change effects on the diversity and distribution of soybean true bugs pests. Pest Manag Sci, 2024, 80: 5157–5167.

[196] Yu X Z, Jia D S, Wang Z, et al. A plant reovirus hijacks endoplasmic reticulum-associated degradation machinery to promote efficient viral transmission by its planthopper vector under high temperature conditions. PLoS Pathog, 2021, 17: e1009347.

[197] 郭洪刚, 王世藩, 戈峰. 植物激素信号调控的“植物病毒-植物-媒介昆虫”三者互作对温室气体变化的响应. 中国科学: 生命科学, 2017, 47: 928–935.
Guo H G, Wang S F, Ge F. The response of the interaction between plant viruses, plants, and vector insects regulated by plant hormone signals to greenhouse gas changes. Sci Sin Vitae, 2017, 47: 928–935 (in Chinese).

[198] Porras M F, Navas C A, Marden J H, et al. Enhanced heat tolerance of viral-infected aphids leads to niche expansion and reduced interspecific competition. Nat Commun, 2020, 11: 1184.

[199] Ingwell L L, Eigenbrode S D, Bosque-Pérez N A. Plant viruses alter insect behavior to enhance their spread. Sci Rep, 2012, 2: 578.

[200] 朱婷婷. 农业科学种植及病虫害防治技术重点分析. 中外食品工业, 2025, (6): 126–128.
Zhu T T. Key analysis of agricultural scientific planting and pest control technology. Glob Food Ind, 2025, (6): 126–128 (in Chinese).

[201] 甘婉平, 蒙佳辉, 谭钢, 等. 农作物病虫害防治技术在现代农业可持续发展中的应用问题及对策. 种子世界, 2025, (5): 108–110.
Gan W P, Meng J H, Tan G, et al. The application issues and countermeasures of crop disease and pest control technology in sustainable development of modern agriculture. Seed World, 2025, (5): 108–110 (in Chinese).

[202] Wang X L, Yue Y J, Zhai Y Q, et al. Functional redundancy in the toxic pathway of Bt protein Cry1Ab, but not Cry1Fa, against the Asian corn borer. Proc Natl Acad Sci USA, 2025, 122: e2503674122.

[203] Saeed Q, Mustafa A, Ali S, et al. Advancing crop resilience through nucleic acid innovations: rhizosphere engineering for food security and climate adaptation. Int J Biol Macromol, 2025, 310: 143194.

[204] Trivedi P, Schenk P M, Wallenstein M D, et al. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Microb Biotechnol, 2017, 10: 999–1003.

[205] Berendsen R L, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J, 2018, 12: 1496–1507.

[206] Chaud M, Souto E B, Zielinska A, et al. Nanopesticides in agriculture: benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics, 2021, 9: 131.

[207] 张梅云. 农作物病虫害防治技术探究. 广东蚕业, 2024, 58(6): 100–102.
Zhang M Y. Research on crop disease and pest control techniques. Guangdong Seric, 2024, 58(6): 100–102 (in Chinese).

[208] Soheilifard F, Mark J, Zhang Y Y, et al. Farm-level environmental sustainability assessment of agricultural pest control strategies across Europe. Sustain Prod Consum, 2025, 58: 237–250.

[209] Su S S, Liu H W, Zhang J R, et al. Discovery and structure-activity relationship studies of novel tetrahydro-β-carboline derivatives as apoptosis initiators for treating bacterial infections. J Integr Agric, 2024, 23: 1259–1273.

[210] Hammond S M, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404: 293–296.

[211] Tomari Y, Zamore P D. Perspective: machines for RNAi. Genes Dev, 2005, 19: 517–529.

[212] Wu L Y, Chen F R, Wang P W, et al. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum. J Integr Agric, 2025, 24: 2285–2298.

[213] 封洪强, 姚青, 胡程, 等. 我国农作物病虫害智能监测预警技术新进展. 植物保护, 2023, 49(5): 229–242.
Feng H Q, Yao Q, Hu C, et al. Recent advances in intelligent techniques for monitoring and prediction of crop diseases and insect pests in China. Plant Prot, 2023, 49(5): 229–242 (in Chinese with English abstract).

[214] 王纯枝, 霍治国, 张蕾, 等. 北方地区小麦蚜虫气象适宜度预报模型构建. 应用气象学报, 2020, 31: 280–289.
Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31: 280–289 (in Chinese).

[215] 林嘉豪, 户雪敏, 段维彤, 等. 湖北小麦条锈病预测模型的构建及应用. 植物保护, 2025, 51(1): 161–168.
Lin J H, Hu X M, Duan W T, et al. Construction and application of wheat stripe rust prediction model for Hubei. Plant Prot, 2025, 51(1): 161–168 (in Chinese with English abstract).

[216] 岳伟, 陈曦, 姚卫平, 等. 安徽省小麦赤霉病气象风险评估与区划. 植物保护, 2022, 48(5): 167–173.
Yue W, Chen X, Yao W P, et al. Meteorological risk assessment and regionalization of wheat scab in Anhui Province. Plant Prot, 2022, 48(5): 167–173 (in Chinese with English abstract).

[217] Garrett K A, Bebber D P, Etherton B A, et al. Climate change effects on pathogen emergence: artificial intelligence to translate big data for mitigation. Annu Rev Phytopathol, 2022, 60: 357–378.

[218] Patel P M, Varma C B. Climate variables affecting insect pests. Insect Envt, 2024, 27: 61–63.

[219] Altieri M A, Nicholls C I, Dinelli G, et al. Towards an agroecological approach to crop health: reducing pest incidence through synergies between plant diversity and soil microbial ecology. NPJ Sustain Agric, 2024, 2: 6.

[220] Tüzel Y, Kayıkçıoğlu H H, Durdu T, et al. Enhancing tomato drought resilience with organic amendments and local landraces. Sci Rep, 2025, 15: 26172.

[221] Vega D, Ibarra S, Varela Pardo R A, et al. Agroecological management of crop diseases: a review. Agroecol Sustain Food Syst, 2023, 47: 919–949.

[222] Yamamura K, Yokozawa M, Nishimori M, et al. How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Popul Ecol, 2006, 48: 31–48.

[223] Chandrakumara K, Sau A K, Ankur, et al. Variations in the biological and ecological attributes of insects due to climate change: a review. Ije, 2024, 86, 319–328. 
[1] 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546.
[2] 王芬, 吴东丽, 张全军. 湖北省一季稻发育期对气候变化的响应[J]. 作物学报, 2025, 51(7): 1934-1948.
[3] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[4] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[5] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[6] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[7] 谢雄泽, 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏. 长江流域冬油菜需水量及水分盈亏特征分析[J]. 作物学报, 2024, 50(7): 1829-1840.
[8] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 陈佳娜, 黄敏. 米粉稻早季与晚季种植品质差异研究[J]. 作物学报, 2024, 50(2): 451-463.
[9] 王露, 赵炯超, 王艺璇, 米艳华, 张宁怡, 赵明宇, 褚庆全. 三七种植适宜区的分布及其对气候变化的响应[J]. 作物学报, 2024, 50(11): 2860-2869.
[10] 成华强, 侯青青, 朱敏, 杨轩. 气候变化与轮作制度对晋北饲用燕麦产草量的影响[J]. 作物学报, 2024, 50(10): 2599-2613.
[11] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[12] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[13] 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305-1315.
[14] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[15] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 柴健, 李悦, 吕汉强, 尚永盼, 杨学慧. 麦后复种绿肥翻压还田结合减氮对土壤水热特性及玉米产量的影响[J]. 作物学报, 2023, 49(10): 2793-2805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!