欢迎访问作物学报,今天是

作物学报

• •    

蔗茅耐寒相关基因EfWRKY51克隆分析及功能验证

万慧兰1,**,吴华英1,4,**,曾丹1,5,钱禛锋1,赵昌祖1,廖然超1,何丽莲1,2,*,李富生1,2,3,*   

  1. 1云南农业大学农学与生物技术学院, 云南昆明650201; 2云南农业大学甘蔗研究所, 云南昆明650201; 3云南省作物生产与智慧农业重点实验室, 云南昆明650201; 4重庆移通学院, 重庆400800; 5丽江市种子管理站, 云南丽江674100
  • 收稿日期:2025-01-26 修回日期:2025-04-27 接受日期:2025-04-27 网络出版日期:2025-05-13
  • 基金资助:
    本研究由云南省重大科技专项(202202AE090021)和国家自然科学基金项目(31960451)资助。

Cloning analysis and functional validation of EfWRKY51 gene related to cold tolerance in Erianthus fulvus

WAN Hui-Lan1,**,WU Hua-Ying1,4,**,ZENG Dan1,5,QIAN Zhen-Feng1,ZHAO Chang-Zu1,LIAO Ran-Chao1,HE Li-Lian1,2,*,LI Fu-Sheng1,2,3,*   

  1. 1 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; 2 Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China; 3 The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, Yunnan, China; 4 Chongqing College of Mobile Communication, Chongqing 400800, China; 5 Lijiang City Seed Management Station, Lijiang 674100, Yunnan, China
  • Received:2025-01-26 Revised:2025-04-27 Accepted:2025-04-27 Published online:2025-05-13
  • Supported by:
    This study was supported by the Major Science and Technology Project of Yunnan Province (202202AE090021) and the National Natural Science Foundation of China (31960451).

摘要:

WRKY家族基因广泛参与植物的低温胁迫应答,是植物中最重要的转录因子之一。蔗茅属于甘蔗的近缘野生种,具有优异的耐性,但WRKY基因是否参与蔗茅对低温胁迫的应答尚不清楚。本研究从蔗茅中克隆得到EFWRKY51基因(GenBank: UVJ69259.1)该基因CDS全长915 bp,编码304个氨基酸。EFWRKY51基因被冷胁迫诱导上调表达,编码蛋白亚细胞定位于细胞核,且无转录激活活性。通过农杆菌介导的叶盘法转化,获得异源表达EFWRKY51基因的转基因烟草株系。低温胁迫处理后,转基因烟草株系的叶片萎蔫程度低于野生型,且种子发芽率和根长均显著高于野生型(WT);此外,低温胁迫下转基因株系的抗氧化酶过氧化物酶(POD)、超氧化物歧化酶(SOD)活性以及渗透调节物质脯氨酸(Pro)、可溶性糖(SS)含量均显著高于WT株系,丙二醛(MDA)含量显著低于WT株系,表明EfWRKY51基因过表达增强了转基因烟草株系的耐性。本研究结果为阐明EfWRKY51基因调控蔗茅耐性提供了依据,为甘蔗耐遗传改良提供了基因资源。

关键词: 甘蔗, 蔗茅, EfWRKY51基因, 异源表达, 耐寒性

Abstract:

WRKY family transcription factors play critical roles in plant response to cold stress. Erianthus fulvus, a wild relative of sugarcane, exhibits remarkable cold tolerance; however, the function of WRKY genes in cold stress its response remains largely unknow. In this study, the EfWRKY51 gene (GenBank accession no: UVJ69259.1) was cloned from E fulvus. The full-length coding sequence (CDS) was 915 bp and encoding a 304-amino-acid protein. EfWRKY51 expression was upregulated under cold stress, and the encoded protein localized to the nucleus but exhibited no ptranscriptional activation activity. Transgenic tobacco lines overexpressing EfWRKY51 were generated via Agrobacterium-mediated leaf disc transformation. Following cold treatment, transgenic lines showed less leaf wilting compared to the wild type (WT), and displayed significantly higher seed germination rates and root lengths. Moreover, under cold stress, transgenic lines exhibited significantly higher activities of peroxidase (POD) and superoxide dismutase (SOD), as well as increased levels of proline (Pro) and soluble sugars (SS), while malondialdehyde (MDA) content was significantly reduced compared to WT. These results indicate that EfWRKY51 overexpression enhances cold tolerance in transgenic tobacco. This study provides new insights into the regulatory role of EfWRKY51 under cold stress and offers a valuable genetic resource for improving cold tolerance in sugarcane.

Key words: sugarcane, Erianthus fulvus, EfWRKY51 gene, heterologous expression, cold tolerance

[1] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248270.

Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248–270 (in Chinese with English abstract).

[2] 郑广杰, 叶昌, 徐春梅, 陈松, 褚光, 陈里鹏, 章秀福, 王丹英. 低温胁迫对水稻胚芽中葡萄糖和水分状态的影响及其与种子出苗成活间的关系. 作物学报, 2024, 50: 3055–3068.

Zheng G J, Ye C, Xu C M, Chen S, Chu G, Chen L P, Zhang X F, Wang D Y. Effect of low-temperature stress on glucose and water status in rice germ and its relationship with seedling emergence. Acta Agron Sin, 2024, 50: 3055–3068 (in Chinese with English abstract).

[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, . 低温胁迫对普通和高油酸花生种子萌发的影响. 作物学报, 2021, 47: 17681778.

Xue X M, Wu J, Wang X, Bai D M, Hu M L, Yan L Y, Chen Y N, Kang Y P, Wang Z H, Huai D X, et al. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid. Acta Agron Sin, 2021, 47: 1768–1778 (in Chinese with English abstract).

[4] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, . 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 12081220.

Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, et al. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208–1220 (in Chinese with English abstract).

[5] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018, 44: 288296.

Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H. Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sin, 2018, 44: 288–296 (in Chinese with English abstract).

[6] 韩冰, 贺超兴, 闫妍, 郭世荣, 于贤昌. AMF对低温胁迫下黄瓜幼苗生长和叶片抗氧化系统的影响. 中国农业科学, 2011, 44: 16461653.

Han B, He C X, Yan Y, Guo S R, Yu X C. Effects of arbuscular mycorrhiza fungi on seedlings growth and antioxidant systems of leaves in cucumber under low temperature stress. Sci Agric Sin, 2011, 44: 1646–1653 (in Chinese with English abstract).

[7] Thomashow M F. PLANT COLD ACCLIMATION freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599.

[8] Kaplan F, Kopka J, Sung D Y, Zhao W, Popp M, Porat R, Guy C L. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J, 2007, 50: 967–981.

[9] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803.

[10] Chinnusamy V, Zhu J H, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007, 12: 444–451.

[11] Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J, 2015, 81: 505–518.

[12] 李慧, 强胜. 植物冷驯化相关基因研究进展. 植物学通报, 2007, 42: 208217.

Li H, Qiang S. Genes involved in cold acclimation of higher plants. Chin Bull Bot, 2007, 42: 208–217 (in Chinese with English abstract).

[13] 彭婷. 不同梅花品种CBF/DREB1同源基因的克隆及功能分析. 华中农业大学博士学位论文, 湖北武汉, 2016.

Peng T. Cloning and Functional Analysis of CBF/DREB1 Homologous Genes in Mei Cultivars with Constrating Levels of Freezing Tolerance. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).

[14] 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 17.

Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1–7 (in Chinese with English abstract).

[15] Qian Z F, He L L, Li F S. Understanding cold stress response mechanisms in plants: an overview. Front Plant Sci, 2024, 15: 1443317.

[16] Wani S H, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep, 2021, 40: 1071–1085.

[17] Xue C J, Huang X Z, Zhao Y C. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep, 2024, 14: 28620.

[18] Zhang M X, Zhao R R, Huang K, Huang S Z, Wang H T, Wei Z Q, Li Z, Bian M D, Jiang W Z, Wu T, et al. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. Plant J, 2022, 112: 383–398.

[19] Wang X, Li Z Y, Shi Y T, Liu Z Y, Zhang X Y, Gong Z Z, Yang S H. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO J, 2023, 42: e112999.

[20] Zhang Y, Yu H J, Yang X Y, Li Q, Ling J, Wang H, Gu X F, Huang S W, Jiang W J. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem, 2016, 108: 478–487.

[21] 王楠楠, 董彬, 杨丽媛, 赵宏波. 梅花2PmWRKY2基因克隆及在逆境胁迫下的表达模式. 浙江农林大学学报, 2021, 38: 812819.

Wang N N, Dong B, Yang L Y, Zhao H B. Cloning and expression analysis under adversity stress of 2 PmWRKY2 in Prunus mume. J Zhejiang A&F Univ, 2021, 38: 812–819 (in Chinese with English abstract).

[22] Li W X, Pang S Y, Lu Z G, Jin B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants, 2020, 9: 1515.

[23] Tao Z, Kou Y J, Liu H B, Li X H, Xiao J H, Wang S P. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863–4874.

[24] Yang Y, Liu J, Zhou X H, Liu S Y, Zhuang Y. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant. Peer J, 2020, 8: e8777.

[25] Wang M Q, Huang Q X, Lin P, Zeng Q H, Li Y, Liu Q L, Zhang L, Pan Y Z, Jiang B B, Zhang F. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis. Front Plant Sci, 2020, 10: 1746.

[26] 路贵龙, 王朔, 连玉珍, 魏云飞. 甘蔗制糖副产物的开发与利用. 中国糖料, 2020, 42(2): 7580.

Lu G L, Wang S, Lian Y Z, Wei Y F. Development and utilization of sugarcane by-products in the sugar manufacturing process. Sugar Crops China, 2020, 42(2): 75–80 (in Chinese with English abstract).

[27] 付建涛, 孙东磊, 陈立君, 卢颖琳, 赵欢欢, 戴思行, 龚恒亮, 安玉兴. 温度和降水变化与甘蔗产量的关系分析. 热带农业科学, 2018, 38(6): 1317.

Fu J T, Sun D L, Chen L J, Lu Y L, Zhao H H, Dai S X, Gong H L, An Y X. Relationship analysis of the temperature and precipitation with the yield of sugarcane. Chin J Trop Agric, 2018, 38(6): 13–17 (in Chinese with English abstract).

[28] 李素丽, 史晓朋, 李志刚, 杨丽涛, 李杨瑞. 持续自然降温对不同甘蔗品种形态及生理指标的影响. 江苏农业科学, 2017, 45(20): 98103.

Li S L, Shi X P, Li Z G, Yang L T, Li Y R. Effects of continuous natural cooling on morphological and physiological indexes of different sugarcane varieties. Jiangsu Agric Sci, 2017, 45(20): 98–103 (in Chinese).

[29] 欧钊荣, 谭宗琨, 陈汇林, 何燕, 丁美花, 杨鑫. 影响海南省甘蔗产量的气象条件分析研究. 安徽农业科学, 2008, 36: 53665367.

Ou Z R, Tan Z K, Chen H L, He Y, Ding M H, Yang X. Analysis on the meteorological condition influencing the sugarcane yield in Hainan province. J Anhui Agric Sci, 2008, 36: 5366–5367 (in Chinese with English abstract).

[30] 何燕, 谭宗琨, 丁美花, 欧钊荣, 杨鑫. 制约广西甘蔗产量及蔗糖分含量的关键气象条件研究. 安徽农业科学, 2008, 36: 31813184.

He Y, Tan Z K, Ding M H, Ou Z R, Yang X. Study on key meteorological conditions restricting sugarcane yield and sucrose content in Guangxi. J Anhui Agric Sci, 2008, 36: 3181–3184 (in Chinese with English abstract).

[31] 李世成, 李斌, 董有波, 黄丕忠, 林文根, 周云, 唐吉昌, 段绍玲. 临沧市甘蔗霜冻害温度指标的建立与应用. 广东气象, 2023, 45(6): 9295.

Li S C, Li B, Dong Y B, Huang P Z, Lin W G, Zhou Y, Tang J C, Duan S L. Establishment and application of temperature index for sugarcane frost damage in Lincang City. Guangdong Meteor, 2023, 45(6): 92–95 (in Chinese).

[32] 谭宗琨, 何燕, 黄中艳, 欧钊荣, 丁美花. 云南气候对甘蔗产量和蔗糖分的影响分析. 甘蔗糖业, 2008, 37(1): 1521.

Tan Z K, He Y, Huang Z Y, Ou Z R, Ding M H. Analysis on the influence of Yunnan climate on sugarcane yield and sucrose content. Sugarcane Canesugar, 2008, 37(1): 15–21 (in Chinese).

[33] Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics, 2010, 284: 65–73.

[34] Wang J P, Roe B, Macmil S, Yu Q Y, Murray J E, Tang H B, Chen C X, Najar F, Wiley G, Bowers J, et al. Microcollinearity between autopolyploid sugarcane and diploid Sorghum genomes. BMC Genomics, 2010, 11: 261.

[35] 李富生, 林位夫, 何顺长. 开发利用蔗茅野生种质资源的思考. 资源开发与市场, 2004, 20(4): 266270.

Li F S, Lin W F, He S C. Suggestions on developing and utilization of Erianthus fulvus wild species. Resour Dev Mark, 2004, 20(4): 266–270 (in Chinese with English abstract).

[36] 曹哲群, 肖芙荣, 陈疏影, 何丽莲, 李富生. 7个蔗茅野生种及其后代材料苗期耐寒性鉴定. 作物杂志, 2017, (5): 4348.

Cao Z Q, Xiao F R, Chen S Y, He L L, Li F S. Identification of cold tolerance in seven wild sugarcane and three offsprings at seedling stage. Crops, 2017, (5): 43–48 (in Chinese with English abstract).

[37] Chen H W, Li X Z, Li F S, Li D Y, Dong Y, Fan Y H. Bioinformatics analysis of WRKY family genes in Erianthus fulvus ness. Genes, 2022, 13: 2102.

[38] 周会, 雷敬超, 桂意云, 贤武, 梁强, 杨荣仲, 李杨瑞. 甘蔗种质资源自然条件下耐寒性评价. 植物遗传资源学报, 2012, 13: 968973.

Zhou H, Lei J C, Gui Y Y, Xian W, Liang Q, Yang R Z, Li Y R. Evaluation on cold tolerance of sugarcane varieties under field conditions. J Plant Genet Resour, 2012, 13: 968–973 (in Chinese with English abstract).

[39] 刘敏, 顾志敏. 烟草叶片原生质体制备及其在蛋白互作研究中的应用. 安徽农业科学, 2014, 42: 50025006.

Liu M, Gu Z M. Preparation of protoplast in Nicotiana benthamiana leaf and application of protoplasts in researches on protein interaction. J Anhui Agric Sci, 2014, 42: 5002–5006 (in Chinese with English abstract).

[40] Krens F A, Molendijk L, Wullems G J, Schilperoort R A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature, 1982, 296: 72–74.

[41] 王哲, 孙敬克, 王世翔, 肖婧婧. 烟草潮霉素抗性浓度的筛选与研究. 河南城建学院学报, 2009, 18(4): 65–67.

Wang Z, Sun J K, Wang S X, Xiao J J. Hygromycin resistance to the concentration of tohacco selection and reserch. J Henan Univ Urban Constr, 2009, 18(4): 65–67 (in Chinese with English abstract).

[42] Fryer M J, Andrews J R, Oxborough K, Blowers D A, Baker N R. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol, 1998, 116: 571–580.

[43] Arisz S A, van Wijk R, Roels W, Zhu J K, Haring M A, Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant S ci, 2013, 4: 1.

[44] 张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较. 作物学报, 2011, 37: 496505.

Zhang B Q, Yang L T, Li Y R. Comparison of physiological and biochemical characteristics related to cold resistance in sugarcane under field conditions. Acta Agron Sin, 2011, 37: 496–505 (in Chinese with English abstract).

[45] 杨映, 梁华儒, 张玲玲, 吴修桥, 魏丽娟, 刘奕清. 花椒对低温胁迫的响应机制研究进展. 植物遗传资源学报, 2025, 26: 1426.

Yang Y, Liang H R, Zhang L L, Wu X Q, Wei L J, Liu Y Q. Research progress of response mechanism of Zanthoxylum bungeanum to low temperature stress. J Plant Genet Resour, 2025, 26: 1426 (in Chinese with English abstract).

[46] Ma Z M, Hu L J. WRKY transcription factor responses and tolerance to abiotic stresses in plants. Int J Mol Sci, 2024, 25: 6845.

[47] Javed T, Gao S J. WRKY transcription factors in plant defense. Trends Genet, 2023, 39: 787–801.

[48] Li Z, Hua X T, Zhong W M, Yuan Y, Wang Y J, Wang Z C, Ming R, Zhang J S. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant Cell Physiol, 2020, 61: 616–630.

[49] 徐荣, 吴清莲, 孟玉, 陈疏影, 王先宏, 何丽莲, 李富生. 割手密SsWRKY1基因的克隆与表达分析. 分子植物育种, 2020, 18: 866872.

Xu R, Wu Q L, Meng Y, Chen S Y, Wang X H, He L L, Li F S. Cloning and expression analysis of the SsWRKY1 gene in Saccharum spontaneum. Mol Plant Breed, 2020, 18: 866–872 (in Chinese with English abstract).

[50] Shen Q Q, Wang T J, Wang J G, He L L, Zhao T T, Zhao X T, Xie L Y, Qian Z F, Wang X H, Liu L F, et al. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. Plant Physiol Biochem, 2023, 199: 107706.

[51] Wang D J, Wang L, Su W H, Ren Y J, You C H, Zhang C, Que Y X, Su Y C. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.

[52] Javed T, Zhou J R, Li J, Hu Z T, Wang Q N, Gao S J. Identification and expression profiling of WRKY family genes in sugarcane in response to bacterial pathogen infection and nitrogen implantation dosage. Front Plant Sci, 2022, 13: 917953.

[53] Wang L, Liu F, Zhang X, Wang W J, Sun T T, Chen Y F, Dai M J, Yu S X, Xu L P, Su Y C, et al. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.

[54] Villano C, Esposito S, D’Amelia V, Garramone R, Alioto D, Zoina A, Aversano R, Carputo D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep, 2020, 10: 7196.

[55] Wang Y X, Zhang M H, Wu C Z, Chen C, Meng L, Zhang G Q, Zhuang K Y, Shi Q H. SlWRKY51 regulates proline content to enhance chilling tolerance in tomato. Plant Cell Environ, 2024, 47: 5104–5114.

[56] Kim C Y, Vo K T X, Nguyen C D, Jeong D H, Lee S K, Kumar M, Kim S R, Park S H, Kim J K, Jeon J S. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep, 2016, 10: 13–23.

[57] Wang F, Hou X L, Tang J, Wang Z, Wang S M, Jiang F L, Li Y. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep, 2012, 39: 4553–4564.

[58] 代明球, 伍玺王文彬玉米抗旱基因ZmWRKY51及其应用. 中国专利: ZL 202410453330.X, 2024-04-16.

Dai M Q, Wu X, Wang W B. Drought Resistant Gene ZmWRKY51 in Maize and Its Application. Chinese Patent: ZL 202410453330.X, 2024-04-16 (in Chinese).

[59] Wang H L, Cheng X, Yin D M, Chen D L, Luo C, Liu H, Huang C L. Advances in the research on plant WRKY transcription factors responsive to external stresses. Curr Issues Mol Biol, 2023, 45: 2861–2880.

[60] Wang S Y, Wu G Q, Wei M. Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses. Chin J Biotechnol, 2024, 40: 35–52.

[61] 陈婷婷, 杨青川, 丁旺, 康俊梅, 张铁军, 张新全. 紫花苜蓿WRKY转录因子基因的克隆与亚细胞定位. 草业学报, 2012, 21(4): 159167.

Chen T T, Yang Q C, Ding W, Kang J M, Zhang T J, Zhang X Q. Cloning and subcellular localization of a WRKY transcription factor gene of Medicago sativa. Acta Pratac Sin, 2012, 21(4): 159–167 (in Chinese with English abstract).

[62] Xu J, Liu S D, Hong J C, Lin R, Xia X J, Yu J Q, Zhou Y H. SlBTB19 interacts with SlWRKY2 to suppress cold tolerance in tomato via the CBF pathway. Plant J, 2024, 120: 1112–1124.

[63] Chen X S, Gao Z Y, Yu Z H, Ding Q, Qian X J, Zhang C Y, Zhu C Y, Wang Y L, Zhang C W, Li Y, et al. BcWRKY53 promotes chlorophyll biosynthesis and cold tolerance of non-heading Chinese cabbage under cold stress. Plant Physiol Biochem, 2025, 219: 109398.

[64] Liu W, Liang X Q, Cai W J, Wang H, Liu X, Cheng L F, Song P H, Luo G J, Han D G. Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. Int J Mol Sci, 2022, 23: 13418.

[65] Pak S H, Ri T S, Ho T S, Kim G S, Kim H I, Ho U H. Stress responsive ZmWRKY53 gene increases cold tolerance in rice. Transgenic Res, 2024, 33: 219–227.

[1] 侯天钰, 杜孝敬, 赵志强, 热依木·艾尼瓦尔, 伊达耶图拉·阿不拉, 布哈丽且木·阿不力孜, 袁杰, 张燕红, 王奉斌. 粳稻品种芽期耐冷性评价及耐冷种质筛选[J]. 作物学报, 2025, 51(3): 812-822.
[2] 匡博文, 韦妳, 刘金典, 陈美燕, 毛兴洁, 段维兴, 杨细平. 基于甘蔗及其近缘属参考基因组开发SSR标记及数据库[J]. 作物学报, 2025, 51(1): 103-116.
[3] 李旭娟, 李纯佳, 田春艳, 孔春艳, 徐超华, 刘新龙. 甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析[J]. 作物学报, 2024, 50(8): 2131-2142.
[4] 玉泉馨, 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升. 甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究[J]. 作物学报, 2024, 50(7): 1855-1866.
[5] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[6] 薛丽, 李心怡, 黄勇泰, 欧财篮, 吴小青, 余泽怀, 崔泽田, 张木清, 邓祖湖, 余凡. 甘蔗与斑茅杂交染色体组构成特征研究[J]. 作物学报, 2024, 50(3): 633-644.
[7] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[8] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[9] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[10] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[11] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[12] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[13] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[14] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[15] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!