欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (08): 1188-1192.

• 研究论文 • 上一篇    下一篇

用根癌农杆菌介导法转化大豆萌动子叶节细胞

薛仁镐   

  1. 莱阳农学院生命科学学院,山东青岛266109
  • 收稿日期:2005-09-01 修回日期:1900-01-01 出版日期:2006-08-12 网络出版日期:2006-08-12
  • 通讯作者: 薛仁镐

Agrobacterium-mediated Transformation of Soybean Germinating Cotyledonary Node Cells

XUE Ren-Gao   

  1. Department of Life & Science, Laiyang Agricultural College, Qingdao 266109, Shandong, China
  • Received:2005-09-01 Revised:1900-01-01 Published:2006-08-12 Published online:2006-08-12
  • Contact: XUE Ren-Gao

摘要:

利用根癌农杆菌转化萌动大豆成熟子叶节获得了高频率的转基因大豆。从萌发12~16 h的大豆种子切取半片种子作为目标组织,对其子叶节组织进行伤处理后,接种于含有pGB载体的LBA4404农杆菌溶液。pGB载体含有除草剂(phosphinothricin, PPT)抗性基因bar和绿色荧光蛋白基因sgfp。将接种的外植体分别在含有3或5 mg/L PPT的芽诱导培养基、3 mg/L PPT的芽伸长培养基及2~4 mg/L PPT的根诱导培养基上进行了筛选。利用萌发5 d的外植体进行PPT浓度筛选的结果表明,芽诱导、芽伸长及根诱导阶段的PPT浓度分别为5、3及3 mg/L时,转化效率达到最大值,为5.3%。PCR和Southern杂交结果证实了外源基因稳定地整合在大豆基因组中。Northern杂交和GFP分析结果表明被整合的外源基因在大豆细胞中得到了稳定的表达。成熟植株对体外喷洒100 mg/L PPT溶液产生抗性。转化效率达8.9%。

关键词: 大豆, 根癌农杆菌, 转化, 萌动种子, 子叶节

Abstract:

An efficient transformation method for obtaining a high frequency of transformants of soybean [Glycine max (L) Merrill] was developed by inoculation of germinating cotyledonary node with Agrobacterium tumefaciens cells. Soybean seeds were germinated for 12–16 h, and the cotyledonary node cells of half seeds were inoculated with Agrobacterium tumefaciens cells harboring a binary vector pGB that contained the bar and sgfp genes conferring phosphinothricin (PPT)-resistance and green fluorescent protein (GFP) activity, respectively. The inoculated explants were selected on the shoot initiation,shoot elongation, and root induction media containing PPT, respectively. The optimal selection concentrations of PPT for 5-day-old explants were 5 mg/L for shoot initiation, 3 mg/L for shoot elongation, and 3 mg/L for root induction. To determine the effect of the different target tissues on the transformation efficiency, a total of four different cotyledonary nodes germinated for 12–16 h, 2 day, 5 day, and 10 day, respectively, were tested under the optimal selection system. The highest average transformation efficiency (8.9%) of soybean was obtained when the cotyledonary nodes germinated for 12–16 h were used as a target tissue, while in case of using the cotyledonary nodes germinated for 5 and 10 days, respectively, as a target tissue, their transformation efficiencies were remarkably reduced. Stable integration and maintenance of the transgenes in the genome of the PPT-resistant plants were confirmed by Polymerase chain reaction and genomic Southern blot analysis. GFP analysis revealed that the transgenes were highly expressed in the leaves and stems of the transformants. Transgenic plants were resistant to 100 mg/L PPT when applied on the leaves, demonstrating their herbicide-resistance. The transformation strategy described in this study will provide a practical protocol to generate diverse transgenic soybean plants

Key words: Soybean (Glycine max L. Merr.), Agrobacterium tumefaciens, Transformation, Germinating seed, Cotyledonary node

中图分类号: 

  • S565
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!