欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (12): 1873-1877.

• 研究论文 • 上一篇    下一篇

大豆脂肪酸组分的胚、细胞质和母体遗传效应分析

宁海龙**;李文霞;李文滨   

  1. 大豆生物学教育部重点实验室;东北农业大学大豆研究所,黑龙江哈尔滨 150030
  • 收稿日期:2005-11-28 修回日期:1900-01-01 出版日期:2006-12-12 网络出版日期:2006-12-12
  • 通讯作者: 宁海龙

Analysis of Embryo, Cytoplasmic and Maternal Effects on Fatty Acid Components in Soybean(G. max Merill)

NING Hai-Long*,LI Wen-Xia,LI Wen-Bin   

  1. Key Laboratory of Soybean Biology of Ministry of Education;Soybean Research Institute,Northeast Agricultural University,Harbin 150030, Heilongjian,China
  • Received:2005-11-28 Revised:1900-01-01 Published:2006-12-12 Published online:2006-12-12
  • Contact: NING Hai-Long

摘要:

利用5个大豆品种配制20个杂交组合,采用广义种子遗传模型分析了大豆脂肪酸组分的胚、细胞质和母体植株等3套遗传体系的基因主效应和基因型×环境效应。棕榈酸含量、硬脂酸含量和亚油酸含量是以基因型×环境互作效应为主。亚麻酸和油酸的遗传主效应和基因型×环境互作效应相近。在脂肪酸组分的遗传主效应中,棕榈酸、硬脂酸和亚油酸含量是以胚主效应为主。油酸含量和亚麻酸含量以细胞质主效应为主。在基因型×环境互作方差中,脂肪酸组分以极显著的胚互作方差为主。亚麻酸含量是以基因的加性效应和加性×环境互作效应为主,棕榈酸含量、硬脂酸含量、油酸含量和亚油酸含量以基因的显性和显性×环境互作效应为主。棕榈酸含量和油酸含量是以普通狭义遗传率为主。硬脂酸、亚油酸含量和亚麻酸含量以互作狭义遗传率为主。在普通狭义遗传率中,棕榈酸含量、油酸含量和亚麻酸含量以细胞质普通遗传率和母体普通遗传率为主。在互作狭义遗传率中,油酸含量和亚麻酸含量以胚互作狭义遗传率为主,亚油酸含量以母体植株互作遗传率为主。棕榈酸含量、硬脂酸含量、油酸含量和亚油酸含量以细胞质及母体选择响应和互作选择响应为主,亚麻酸含量的胚普通选择响应和互作选择响应为主。

关键词: 大豆, 脂肪酸组分, 胚遗传效应, 细胞质遗传效应, 母体遗传效应, 遗传率

Abstract:

Quality of oil determined by the constituents and proportion of fatty acid components, and the understanding of heredity of fatty acid components is of importance to breeding for good quality soybean varieties. Embryo, cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean (G. max Merill)seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2 of 20 crosses from a diallel mating design of 5 parents planted in the field in 2003 and 2004 in Harbin, China. The interaction effects of palmitic, stearic and linoleic acids contents were larger than genetic main effects,while genetic main effects were equal to interaction effects for linolenic and oleic acids content. Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic and linoleic acids,and cytoplasm effects were the largest for oleic and linolenic acids. Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids. The sum of additive and additive×environment effects were larger than that of dominance and dominance×environment effects for linolenic acids content, but not for other quality traits. The general heritabilities were the main parts of heritabilities for palmitic acids content and oleic acids content,but the interaction were more important for stearic, linoleic and linolenic acids contents. For the general heritability, maternal and cytoplasm heritabilities were the main components for palmitic, oleic and linolenic acids contenst. It was shown for the interaction heritabilities that embryo interaction heritabilities were more important for oleic and linolenic acids contents,while maternal interaction heritabilities were more important for linoleic acids content. Among selection response components,maternal and cytoplasm general responses and/or interaction responses were more important for palmitic, stearic, oleic and linoleic acids contents. The main selection response components were from embryo general response and/or interaction response for linolenic acid content. It suggested that the selection of palmitic, stearic, oleic and linoleic acids contents in offspring should be in maternal plants,while linolenic acids content should be improved screening the single seed or selected in higher generations.

Key words: Soybean, Fatty acids, Embryo effects, Cytoplasmic effects, Maternal effects, Heritability

中图分类号: 

  • S512
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!