欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (02): 311-316.

• 研究论文 • 上一篇    下一篇

基于近地高光谱棉花生物量遥感估算模型

柏军华1;李少昆1,2,*;王克如1,2;隋学艳1;陈兵1   

  1. 1 新疆兵团绿洲生态农业重点开放实验室,新疆石河子832003;2 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081
  • 收稿日期:2005-11-09 修回日期:1900-01-01 出版日期:2007-02-12 网络出版日期:2007-02-12
  • 通讯作者: 李少昆

Estimation Models of Cotton Aboveground Fresh Biomass Based on Field Hyperspectral Remote Sensing

BAI Jun-Hua1,LI Shao-Kun12*,WANG Ke-Ru12,SHUI Xue-Yan1,CHEN Bing1   

  1. 1 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Construction Crops, Shihezi 832003, Xinjiang; 2 Institute of Crop Sciences, Chinese Academy of Agriculture Sciences / The National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2005-11-09 Revised:1900-01-01 Published:2007-02-12 Published online:2007-02-12
  • Contact: LI Shao-Kun

摘要:

分析棉花地上鲜生物量冠层高光谱反射率变异系数,反射率光谱、一阶微分光谱与地上鲜生物量相关关系得结果表明:在可见光近红外波段棉花冠层反射率光谱变异系数在672 nm波段处最大;棉花地上鲜生物量与反射率光谱相关系数最大值在可见光波段出现在589~700 nm,在近红外波段出现在865~919 nm波段,且前者大于后者。地上鲜生物量与一阶微分光谱相关系数在可见光波段出现524~528 nm、552~588 nm、710~755 nm 3个高值区。基于以上研究,选择19个高光谱特征参数建立了棉花地上鲜生物量高光谱遥感监测模型,经检验,单波段中以F629估算水平最高,估算模型为Y = 9.7914 exp(-20.738 F629),准确度为83.9%、RMSE为0.64 kg m-2、预测值与实测值相关系数为0.940**;组合参数以[629, 901]指数形式估算模型估算水平最高,模型为Y = 0.0986 exp(4.3696[629, 901]),准确度达84.0%,RMSE为0.55 kg m-2,预测值与实测值相关系数为0.960**,上述两个模型为参选模型中估算棉花地上鲜生物量最佳高光谱估算模型。

关键词: 棉花, 地上鲜生物量, 高光谱遥感, 监测模型

Abstract:

Aboveground fresh biomass is an important colony qualitative index of cotton, and so it is significant for production management and yield estimation in cotton to establish the monitoring model based on hyperspectral parameter. The wavelength variation coefficient of cotton canopy hyperspectrum on aboveground fresh biomass and the correlation between the aboveground fresh biomass and reflective spectrum, the first derivative spectrum showed that the biggest value of hyperspectral variation coefficient of cotton canopy reflectance in the visible light region was in 672 nm. The biggest value of correlation coefficient between the aboveground fresh biomass and reflectance spectrum at the visible light region was in 589–700 nm and at the near infrared red region in 865-919 nm, and the former was larger than latter. The correlation coefficient between the aboveground fresh biomass and the first derivative value in the visible light had three high-value areas including 524–528 nm, 552–588 nm and 710–755 nm. According to the analysis above, the nineteen hyperspectral characteristic parameters were used to establish the hyperspectral remote sensing estimation models of the aboveground fresh biomass in cotton. The tested result of models expressed the parameters veracity of estimating the aboveground fresh biomass in cotton, including reflectance of 682 nm and 629 nm and the combination forms, was up 80%. Among them, F629[Y = 9.7914 exp(-20.738 F629)]in single band reflectance parameters was better, its veracity reached to 83.9%, RMSE was 0.64 kg m-2, and the correlation coefficient between the estimated value and measured value was 0.94**; The monitoring model of [629, 901] [Y = 0.0986 exp(4.3696 [629, 901])] was best, and its veracity reached to 84.0%, RMSE was 0.55 kg m-2, and the correlation coefficient between the estimated value and measured value was 0.96**, the two models above were the best among the elected models estimating cotton aboveground fresh biomass.

Key words: Cotton, Aboveround fresh biomass, Hyperspectral remote sensing, Estimation models

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!