欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (02): 317-321.

• 研究论文 • 上一篇    下一篇

用SSR技术和混合取样方法估算玉米群体间的遗传距离

侯本军1;王铁固1,2;陈彦惠1,*;吴连成1;库丽霞1   

  1. 1 河南农业大学农学院,河南郑州450002;2 郑州大学离子束生物工程重点实验室,河南郑州450052
  • 收稿日期:2006-01-04 修回日期:1900-01-01 出版日期:2007-02-12 网络出版日期:2007-02-12
  • 通讯作者: 陈彦惠

DNA Sampling Strategy and Calculation of Genetic Distance between Maize (Zea mays L.) Populations

HOU Ben-Jun1,WANG Tie-Gu12,CHEN Yan-Hui1*,WU Lian-Cheng1,KU Li-Xia1   

  1. 1 Agronomy College, Henan Agricultural University, Zhengzhou 450002, Henan; 2Ion Beam Biotechnology Key Laboratory, Zhengzhou University, Zhengzhou 450052, Henan, China
  • Received:2006-01-04 Revised:1900-01-01 Published:2007-02-12 Published online:2007-02-12
  • Contact: CHEN Yan-Hui

摘要:

The factors affecting the binding characteristics of GBSS with starch granule were studied using a wheat (Triticum aestivum) cultivar Chinese Spring with different temperature treatments. After sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, we got GBSS concentration by coomassie brilliant blue G-250(CBB G-250) method. The results showed that the temperature affected the binding of GBSS and starch granule. In 50–80℃, the concentration of GBSS unbound from starch increased with the temperature rising, which the maximal concentration was 11.361 μg mL-1 at 80℃, while that was reduced when the temperature was 85–95℃. Furthermore, Mg2+ could also affect the quantity of GBSS unbound from starch. When Mg2+ concentration was lower than 1.75 mmol L-1, the concentration of GBSS unbound increased. The lower Mg2+ concentration, the higher the concentration of GBSS unbound. However, when Mg2+ concentration was higher than 2.5 mmol L-1, it could restrain GBSS unbinding. These results showed that GBSS bound starch granule by non-covalent bonds. The best GBSS extracting conditions were 55 mmol L-1 Tris-HCl (pH 6.8), 0.75 mmol L-1 MgCl2, 2.3% SDS, 5% 2-ME and 10% glycerol, 15 min in boiling water, or 55 mmol L-1 Tris-HCl (pH 6.8), 0.75 mmol L-1 MgCl2, 2.3% SDS, 5% 2-ME and 10% glycerol, 80℃ 30 min. The results are helpful to investigate 3-D structure of biological activated GBSS and mechanism of GBSS binding with starch granule.

关键词: SSR, 玉米, 遗传距离, 遗传多样性, 取样方法

Abstract:

SSR is a good molecule marker with broad application. Bulk sampling is feasible to analyze genetic diversity of maize population by SSR. It is necessary to study influence of genetic distance as using bulk sampling. In present study, the genetic distances between two populations were compared and analyzed by 50 pairs of SSR primers, checked by inbred lines Huangzao 4 and Mo17, and using 60 individuals DNA samples of Golden Queen and Yuzong 5 maize populations with six treatments (the individual DNA samples, the mixed DNA samples with 5 individuals, 10 individuals, 15 individuals, 20 individuals, and 30 individuals, respectively). The results indicated that using the individual DNA samples can detect the alleles with very low frequencies, and make the detected allele number decreased gradually and the frequency of missing alleles increased with the increase of mixed individuals in the treatmen. The results of the genetic distance between two populations calculated by three models suggested that the genetic distances GD, GD(J) and GD(N) showed a gradually increasing trend with the increasing of the mixed individual number, but the increasing extent of GD(J) and GD(N) was wider. There was an obvious deviation between GD(J), GD(N) from mixed samples and the GD from 60 individual DNA samples based on allele frequency. The results and the comparison of the genetic distances based on different calculation methods suggested that the 10 individuals’ DNA mixture is the best sampling strategy when genetic diversity and polymorphism in maize populations are studied by SSR.
If the Nei’s genetic distance GD(N) and Jaccord’s genetic distance GD(J) are calculated according to 0, 1 data, (GD(N)+GD(J))/2 will be calculated close to the genetic distance by allele frequency of individuals. Gene frequency can be studied by using capillary electrophoresis and SSR fluorescence detection. There will be a broad application prospect about bulk sampling strategy with SSR marker.

Key words: SSR, Maize, Genetic distance, Genetic diversity, Sampling method

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[11] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!