欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (04): 531-538.

• 研究论文 • 上一篇    下一篇

棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响

张文静;胡宏标;陈兵林;束红梅;王友华;周治国*   

  1. 南京农业大学/农业部作物生长调控重点开放实验室,江苏南京 210095
  • 收稿日期:2006-06-28 修回日期:1900-01-01 出版日期:2007-04-12 网络出版日期:2007-04-12
  • 通讯作者: 周治国

Genotypic Differences in Some Physiological Characteristics during Cotton Fiber Thickening and Its Relationship with Fiber Strength

ZHANG Wen-Jing,HU Hong-Biao,CHEN Bing-Lin,SHU Hong-Mei,WANG You-Hua,ZHOU ZHi-Guo*   

  1. Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2006-06-28 Revised:1900-01-01 Published:2007-04-12 Published online:2007-04-12
  • Contact: ZHOU ZHi-Guo

摘要:

选择3类棉纤维比强度差异明显的品种,于2004—2005年在江苏南京(长江流域下游棉区)研究棉纤维加厚发育过程中主要生理特性的基因型差异及对纤维比强度的影响,为探索改善棉纤维比强度的生理调控途径提供理论依据。结果表明,高纤维比强度基因型(科棉1号)棉纤维中可溶性糖转化多,进入纤维次生壁加厚发育期的β-1,3-葡聚糖含量峰值高,纤维素合成关键酶(蔗糖合成酶和β-1,3-葡聚糖酶)活性增强快、峰值高,纤维素累积速率平缓且快速累积期长;而较低纤维比强度基因型(苏棉15和德夏棉1号)的棉纤维加厚发育生理特征与此相反;中等棉纤维比强度基因型(美棉33B)则介于上述两者之间。与纤维素生物合成相关的物质和关键酶活性变化的基因型差异是造成纤维素累积速率及纤维比强度差异的主要生理原因之一。此外,β-1,3-葡聚糖含量的剧增可作为棉纤维进入次生壁加厚发育阶段的一个重要特征。

关键词: 棉花, 基因型, 纤维加厚发育, 生理特性, 纤维比强度

Abstract:

The secondary wall thickening stage is a key period to cotton fiber strength development and many complex physiological and biochemical processes are involved in it. To investigate the relationship between the genotypic differences in some physiological characteristics during cotton fiber thickening and the fiber strength, we carried out the 2-year experiments in Nanjing, Jiangsu Province (cotton belts in lower basin of the Yangtze River) in 2004–2005 by using three genotypes with significant difference in fiber strength as materials. Flowers were labeled at anthesis and sampling was conducted every seven days from 10 DPA (day post-anthesis) on. The results showed that the genotype Ⅰ with high strength fiber (Kemian 1 was representative cultivar) had more soluble sugar transformed, higher peak of β-1,3-glucan content at the onset of fiber secondary wall thickening. Sucrose synthetase and β-1,3-glucanase, plays very important roles in fiber development, always kept in higher activities in Kemian 1 than in other tested cultivars during the fiber secondary wall thickening. All these resulted in longer term and more tempered cellulose accumulation and higher strength fiber formation. On the contrary, the genotype Ⅱ with lower strength fiber (Dexiamian 1 and Sumian 15 were representative cultivars) had less soluble sugar transformed, lower peak of β-1,3-glucan content at the onset of fiber secondary wall thickening, slower increasing trend of the key enzymes activities and a more quickly descended trend afterward, leading to a shorter term and rapid cellulose accumulation and lower strength fiber. Dexiamian 1, an early cultivar, reached the peak values of β-1,3-glucan content and key enzymes activities earlier than other cultivars for about a week. And the starting time of cellulose rapid accumulation was also earlier than other tested cultivars. The characters of the genotype Ⅲ with medium strength fiber (NuCOTN 33B) were intermediate. From above results, we suggest that the differences of the dynamics of soluble sugar and β-1,3-glucan contents and sucrose synthetase and β-1,3-glucanase might be one of the physiological reasons for the differences in the cellulose accumulation and fiber strength formation. Further, the occurrence of β-1,3-glucan content peak may be proposed as a sign of the onset of secondary wall thickening in the fiber cell.

Key words: Cotton, Genotype, Cotton fiber thickening development, Physiological characters, Fiber strength

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 吴冰卉, 王桂萍, 王玉斌, 李召虎, 张明才. ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应[J]. 作物学报, 2021, 47(5): 799-806.
[12] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[13] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[14] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[15] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!