欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (08): 1262-1266.

• 研究论文 • 上一篇    下一篇

小麦突变体D51抗秆锈性遗传分析及其抗性基因SSR标记

尹静1,2;王广金3,*;张宏纪1;孙岩1;刁艳玲1;黄景华1;郭强1;肖佳雷1;马凤鸣2;孙光祖1   

  1. 1 黑龙江省农业科学院作物育种研究所,黑龙江哈尔滨150086;2 东北农业大学,黑龙江哈尔滨150030;3 黑龙江省农业科学院生物研究中心,黑龙江哈尔滨150086
  • 收稿日期:2006-10-20 修回日期:1900-01-01 出版日期:2007-08-12 网络出版日期:2007-08-12

Genetic Analysis and SSR Mapping of Stem Rust Resistance Gene from Wheat Mutant D51

YIN Jing12,WANG Guang-Jin3*,ZHANG Hong-Ji1,SUN Yan1,DIAO Yan-Ling1,HUANG Jing-Hua1,GUO Qiang1,XIAO Jia-Lei1,Ma Feng-Ming2,SUN Guang-Zu1   

  1. 1 Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang; 2 Northeast Agricultural University, Harbin 150030,Heilongjiang; 3 Biotechnology Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2006-10-20 Revised:1900-01-01 Published:2007-08-12 Published online:2007-08-12

摘要:

D51是优良品系龙6239经辐射诱变和组织培养相结合获得的高产优质抗秆锈突变体材料,对我国优势秆锈病21C3CPH、21C3CKH和21C3CTR小种均表现免疫。利用来自D51/龙6239、D51/中国春的2个F2群体和来自D51/龙6239的1个F2群体分别在苗期和成株期进行21C3CPH小种接种,抗病反应型鉴定表明,3个F2群体中抗感分离比例均为3∶1,说明D51抗秆锈性受一对显性基因控制,全生育期表达,部分D51/龙6239 F2植株的F3株系的抗病鉴定进一步验证F2鉴定的可靠性。利用675对小麦SSR引物和185株D51/龙6239 F2分离群体对SrD51基因进行标记定位,将SrD51定位在5D染色体的短臂上。其中SSR标记Xgwm190和Xwmc150与SrD51基因的遗传距离分别为18.58和21.33 cM,并分别位于目的基因的两侧。由于已知的秆锈抗性基因仅有Sr30被定位在小麦5DL上,且Sr30不抗34C2MKK和34C2MFK,而突变体D51的原亲本龙6239不抗21C3CPH、21C3CKH和21C3CTR,却对34C2MKK和34C2MFK表现免疫抗性。因而推断此突变体的秆锈抗性基因可能是一个新基因,暂命名为SrD51

关键词: 小麦, 秆锈病, 抗性基因, SSR标记

Abstract:

Stem rust caused by Puccinia graminis f. sp. tritici is one of the main diseases of wheat (Triticum aestivum L.) worldwide. Wheat mutant line D51, form a highly susceptive cultivar ‘L6239’ to the three races notated and cultured with immature embryo, shows resistance to prevailing races 21C3CPH, 21C3CKH, and 21C3CTR of P. graminis f. sp. tritici in China. In this paper, number of the resistance genes in mutant D51 and the expression stages were studied with inoculation identification and microsatellite (SSR) marker analysis. Two F1 populations from the crosses of D51×L6239 (60 individuals) and D51×Chinese Spring (60 individuals), their F2 populations (185 and 175 individuals respectively) at seedling and one F2 populations derived from the cross of D51×L6239 (194 individuals) at adult stage were inoculated with pathogen race 21C3CPH to test their resistance. All F1 individuals of the two crosses were immune to stem rust at both seedling and adult stages. The response pattern of the three F2 populations showed that the R:S segregation ratio fit 3:1, suggesting the stem rust resistance of D51 controlled by a single dominant gene, and expressed in whole growth period. The identification to stem rust resistance by F3 progeny test confirmed the credibility of F2 population test. Segregating populations and small population analyses were used to identify chromosomal region and molecular markers linked to the gene by SSR markers method. A total of 675 SSR markers and 185 individuals of D51×L6239 F2 population were used to search genetically linked makers to the target gene. Using Mapmaker3.0 and Map-draw with Kosambi’s function and other options left at default values, molecular mapping revealed that the gene was located on the chromosome 5DS, and linked with and blanked by two SSR markers Xgwm190 and Xwmc150 at 18.58 and 21.33cM, respectively. According to references reported, the only one stem rust resistant gene Sr30 is located on the wheat chromosome 5DL, and has no resistance to 34C2MKK and 34C2MFK, and parent L6239 of mutant D51 is without resistance to 21C3CPH, 21C3CTK and 21C3CTR, but with resistance to 34C2MKK and 34C2MFK.The results above indicate that the gene identified in this paper might be a novel resistance gene to stem rust, designated SrD51 tentatively.

Key words: Wheat (Triticum aestivum L.), Stem rust, Resistance gene, SSR marker

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!