欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 179-184.doi: 10.3724/SP.J.1006.2009.00179

• 研究简报 • 上一篇    下一篇

弱光下生长的高产小麦品系PH01-35旗叶光合机构对不同光强的响应

郭峰1,曲妍妍1,信长朋2,梁燕1,梁雪1,田纪春3,孟庆伟1,赵世杰1,*   

  1. 1山东农业大学生命科学学院/作物生物学国家重点实验室,山东泰安271018;2厦门大学生命科学学院,福建厦门361005;3山东农业大学农学院,山东泰安271018
  • 收稿日期:2008-04-17 修回日期:2008-07-14 出版日期:2009-01-12 网络出版日期:2008-11-18
  • 通讯作者: 赵世杰
  • 基金资助:

    本研究由山东省农业良种工程重大课题(鲁农良种字[2006]6号)资助

Response of Photosynthetic Apparatus to different Irradiance in flag Leaves of High-Yielding Winter Wheat PH01-35 Grown under Low Light Conditions

GUO Feng1,QU Yan-Yan1,XIN Chang-Peng2,LIANG Yan1,LIANG Xue1,TIAN Ji-Chun3,MENG Qing-Wei1,ZHAO Shi-Jie1,*   

  1. 1College of Life Sciences,Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an 271018,China; 2School of Life Sciences, Xiamen University, Xiamen 361005,Fujian;3 College of Agronomy, Shandong Agricultural University,Tai'an 271018,China
  • Received:2008-04-17 Revised:2008-07-14 Published:2009-01-12 Published online:2008-11-18
  • Contact: ZHAO Shi-Jie

摘要:

了解弱光下生长的小麦叶片在不同光强下PSII和光合电子传递链的工作状态,解释其突然转入强光下时发生光抑制和光破坏的原因,以PH01-35为材料,采用大田人工遮光的方法,测定了小麦旗叶叶绿素含量、光合特性参数及快速光曲线。弱光处理15 d后,旗叶叶绿素含量明显上升,净光合速率、光补偿点、光饱和点、表观量子效率、羧化效率均出现不同程度的下降。与250 μmol m-2 s-1的弱光适应3 h相比1 200 μmol m-2 s-1的强光适应3 h后,弱光下生长叶片的快速光曲线初始斜率下降幅度较大,曲线下降部分的斜率、最大相对电子传递速率、半饱和光强的上升幅度均小于自然光下生长的叶片,光能利用能力较低,其非光化学猝灭系数NPQ也明显低于自然光下生长的叶片,为自然光下生长叶片的87.5%。弱光下生长的小麦叶片光能吸收能力增强,但较低的光能利用能力和过剩光能耗散能力是其转入自然强光后易发生光抑制甚至光破坏的主要原因。

关键词: 冬小麦, 弱光, 叶绿素荧光, 快速光曲线

Abstract:

To further explain the mechanism of photoinhibition and light damage in wheat (Triticum aestivum L.) leaves when it was suddenly transferred from low light to high light conditions, the responses of photosynthetic apparatus in shaded leaves of the high-yielding winter wheat line, PH01-35, were examined using chlorophyll fluorescence and gas exchange techniques. After 15-day shading, the chlorophyll content increased greatly, but the net photosynthetic rate (Pn), light compensation point (LCP), light saturation point (LSP), apparent quantum yield (AQY), and carboxylation efficiency (CE) all decreased. Compared with leaves grown in full sunlight, the initial slope (α), decline slope (β), maximum relative electron transport rate (rETRmax), and minimum saturating irradiance (Ek) of rapid light curves in leaves grown in low light were lower when the plant was transferred from low light intensity of 250 μmol m-2 s-1 to high light intensity of 1 200 μmol m-2 s-1. Non photochemical quenching (NPQ) in leaves grown in low light was significantly lower than that in leaves grown in full sunlight, indicating that the ability of light use and thermal energy dissipation was limited in leaves grown in low light. The wheat leaves grown in low light were more susceptible to photoinhibition due to low CO2 assimilation and photoprotective ability, such as xanthophylls cycle-dependent dissipation of excessive energy, despite the better energy absorbability in low light conditions.

Key words: Winter wheat, Low light, Chlorphyll fluorescence, Rapid light curves

[1] Li Y-G(李永庚), Yu Z-W(于振文), Liang X-F(梁晓芳), Zhao J-Y(赵俊晔), Qiu X-B(邱希斌). Response of wheat yields and quality to low light intensity at different grain filling stages. Acta Phytoecol Sin (植物生态学报), 2005, 29(5): 807–813 (in Chinese with English abstract)
[2] He M-R(贺明荣), Wang Z-L(王振林), Gao S-P(高淑萍). Analysis on adaptability of wheat cultivars to low light intensity during grain filling. Acta Agron Sin (作物学报), 2001, 27(5): 640–644 (in Chinese with English abstract)
[3] Pei B-H(裴保华), Yuan Y-X(袁玉欣), Wang Y(王颖). The effect of simulation tree shading to wheat growth and output. J Agric Univ Hebei (河北农业大学学报), 1998, 21(1): 1–5 (in Chinese with English abstract)
[4] Zhou J-Z(周继泽), Liu D-J(柳德钧), Cheng G-Q(程国强). Studies on the physiological response of shading to wheat grain filling. J Henan Vocation-Technical Teachers Coll (河南职技师院学报), 1995, 23(3): 12–15 (in Chinese with English abstract)
[5] Liu X(刘霞), Yin Y-P(尹燕枰), Jiang C-M(姜春明), He M-R(贺明荣), Wang Z-L(王振林). Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat. Chin J Appl Ecol (应用生态学报), 2005, 16(11): 2117–2121 (in Chinese with English abstract)
[6] Xu D-Q(许大全), Zhang Y-Z(张玉忠), Zhang R-X(张荣铣). Photoinhibition of photosynthesis in plants. Plant Physiol Commun (植物生理学通讯), 1992, 28(4): 237–243 (in Chinese)
[7] Demming-Adams B, Adams III W W. Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol, 1992, 43: 599–626
[8] Lichtenthaler H K, Burkart S. Photosynthesis and high light stress. Bulg J Plant Physiol, 1999, 25: 3–16
[9] Yang X-H(杨兴洪), Zou Q(邹琦), Zhao S-J(赵世杰). Photosynthetic characteristics and chlorophyll fluorescence in leaves of cotton plants grown in full light and 40% sunlight. Acta Phytoecol Sin (植物生态学报), 2005, 29(1): 8–15 (in Chinese with English abstract)
[10] ?quist G, Anderson J M, McCaffery S, Chow W S. Mechanistic differences in photoinhibition of sun and shade plants. Planta, 1992, 188: 422–431
[11] Ralph P J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot, 2005, 82: 222–237
[12] Kühl M, Chen M, Ralph P J, Schreiber U, Larkum A W D. A niche for cyanobacteria containing chlorophyll d. Nature, 2005, 433: 820
[13] White A J, Critchley C. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res, 1999, 59: 63–72
[14] Ser?dio J, Vieira S, Cruz S, Barroso F. Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Mar Biol, 2005, 146: 903–914
[15] Ralph P J, Polk S M, Moore K A, Orth R J, Smith Jr W A. Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol, 2002, 271: 189–207
[16] Schreiber U, Gademann R, Ralph P J, Larkum A W D. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol, 1997, 38: 945–951
[17] Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Laboratory Guide for Plant Physiology (植物生理学实验指导). Beijing: Beijing Science & Technology Press, 2002. pp 55–57 (in Chinese)
[18] Bassman J H, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa×P. deltoids clones. Tree Physiol, 1991, 8: 145–159
[19] Genty B, Briantais J M, Baker N R. The relationship between the quenching of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87–92
[20] Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res, 1980, 38: 687–701
[21] Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophy Acta, 1990, 1020: 1–24
[22] Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou G C, Govindjee eds. Chlorophyll Fluorescence: A Signature of Photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004. pp 279–319
[23] Lichrenthaler H K, Babani F. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou G C, Govindjee, eds. Chlorophyll Fluorescence: A Signature of Photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004. pp 713–736
[24] Saroussi S, Beer S. Alpha and quantum yield of aquatic plants derived from PAM fluorometry: uses and misuses. Aquat Bot, 2007, 86: 89–92
[25] Müller P, Li X P, Niyogi K K. Non-photochemical quenching: a response to excess light energy. Plant Physiol, 2001, 125: 1558–1566
[26] Pascal A A, Liu Z F, Broess K, Oort B V, Amerongen H V, Wang C, Horton P, Robert B, Chang W R, Ruban A. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 2005, 436: 134–137
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[5] 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[6] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[7] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[8] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[9] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[10] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[13] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[14] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[15] 张诚信,郭保卫,唐健,许方甫,许轲,胡雅杰,邢志鹏,张洪程,戴其根,霍中洋,魏海燕,黄丽芬,陆阳,唐闯,戴琪星,周苗,孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响[J]. 作物学报, 2019, 45(8): 1208-1220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!