欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1791-1797.doi: 10.3724/SP.J.1006.2009.01791

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

从野生二粒小麦导入普通小麦的抗白粉病基因MlWE18分子标记定位

韩俊1,2,张连松1,李根桥1,张宏涛1,解超杰1,杨作民1,孙其信1,刘志勇1,*   

  1. 1中国农业大学植物遗传育种系/农业生物技术重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/进一步作物杂种优势研究与利用重点实验室,北京100193;2北京农学院植物科技学院,北京102206
  • 收稿日期:2009-02-23 修回日期:2009-04-30 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 刘志勇,E-mail: zhiyongliu@cau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100102,2006AA10Z1E9,2006AA10Z1C4,2006BAD01A02),国家自然科学基金项目(30425039,30771341),教育部长江学者和创新团队发展计划项目,高等学校学科创新引智计划项目(111-2-03)资助。

Molecular Mapping of Powdery Mildew Resistance Gene MlWE18 in Wheat Originated from Wild Emmer(Triticum turgidum var. dicoccoides)

HAN Jun1,2,ZHANG Lian-Song1,LI Gen-Qiao1,ZHANG Hong-Tao1,XIE Chao-Jie1,YANG Zuo-Min1,SUN Qi-Xin1,LIU Zhi-Yong1*   

  1. 1Department of Plant Genetics & Breeding,China Agricultural University/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Researdch & Utilization,Ministry of Education,Beijing 100193 China;2College of Plant Science and Technology,Beijing University of Agriculture,Beijing 102206,China
  • Received:2009-02-23 Revised:2009-04-30 Published:2009-10-12 Published online:2009-08-07
  • Contact: LIU Zhi-Yong,E-mail: zhiyongliu@cau.edu.cn

摘要:

野生二粒小麦(Triticum turgidumvar. dicoccoides)是小麦抗白粉病遗传改良的重要基因资源。利用野生二粒小麦WE18与普通小麦品种()连续多次杂交和自交,育成对白粉病菌生理小种E09高度抵抗的小麦新品系3D249(京双27//燕大1817/WE18/3/温麦4F7)。利用高感白粉病品系薛早和3D249组配杂交组合,获得杂种F1代、F2分离群体和F3代家系,进行苗期白粉病抗性鉴定和遗传分析。结果表明,小麦品系3D249E09小种的抗性受显性单基因控制,暂命名该基因为MlWE18。利用集群分离分析法(BSA)和分子标记分析,发现4个简单重复序列(SSR)标记(Xwmc525Xwmc273Xcfa2040Xcfa2240)1EST-STS标记(Xmag1759)1EST-STS序列标记(XE13-2)与抗白粉病基因MlWE18连锁,在遗传连锁图谱上的顺序为Xwmc525Xcfa2040Xwmc273XE13-2Xmag1759MlWE18Xcfa2240SSR标记的染色体缺失系物理定位结果表明,抗白粉病基因MlWE18位于小麦7A染色体长臂末端的Bin 7AL 16–0.85–1.00。与已知定位于该染色体区域的Pm基因遗传连锁图谱比较表明,MlWE18与抗白粉病基因Pm1MlIW72PmUMlm2033Mlm80均位于7AL相同染色体区段。

关键词: 普通小麦品系3D249, 野生二粒小麦, 抗白粉病基因, MlWE18, 分子标记

Abstract:

Wild emmer (Triticum turgidum var. dicoccoides) is an important germplasm for wheat improvement especially for resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. Common wheat line 3D249 (Jingshuang 27//Yanda 1817/WE18/3/Wenmai 4, F7), a derivative of wild emmer accession WE18 and susceptible elite common wheat lines, was found highly resistant to prevailing powdery mildew isolate E09 at both seedling and adult plant stages in Beijing, China. Genetic analyses of the F1, F2 segregating population and their F3 progenies derived from a cross between susceptible line Xuezao and resistant line 3D249 indicated that the powdery mildew resistance of line 3D249 was controlled by a single dominant gene, temporarily designated MlWE18. By bulked segregant analysis (BSA), four SSR markers (Xwmc525, Xwmc273, Xcfa2040, and Xcfa2240), one RFLP-derived STS marker (Xmag1759) and one EST-STS marker (XE13-2) were found to be linked to MlWE18, with an order of Xwmc525–Xcfa2040–Xwmc273–XE13-2–Xmag1759–MlWE18–Xcfa2240 in the genetic linkage map. Using Chinese Spring nullisomic-tetrasomics, ditelosomics, and deletion lines, MlWE18 was physically mapped on chromosome 7AL terminal bin 7AL 16–0.85–1.00. However, the allelism of wild emmer derived MlWE18 to known powdery mildew resistance genes Pm1, PmU, MlIW72, Mlm2033, and Mlm80, all located on the same chromosome bin, need to be characterized in the future. The common wheat powdery mildew resistance line 3D249 provides useful new germplasm for disease resistance genes pyramiding and marker-assisted selection (MAS) in wheat breeding program.

Key words: Common wheat lin 3D249;Wild emmer(Triticum turgidum var.dicoccoides), Powdery mildew Resistance genes, Mlwe18, Molecular markers

[1] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D J, Appels R,Devos K M. Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, eds. Proc 11th Intl Wheat Genet Symp Sydney, Australia: Sydney University Press, 2008. pp 114-121

[2] Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538

[3] Feldman M, Millet E. Methodologies for identification, allocation and transfer of quantitative genes from wild emmer into cultivated wheat.In: Li Z S, Xin Z Y, eds. Proc 8th Intl Wheat Genet Symp. Beijing: China Agricultural Scientific and Technology Press, 1993. pp 19-27

[4] Dong Y-C(董玉琛). Genepools of Common Wheat. J Triticeae Crops (麦类作物学报), 2000, 20(3): 78-81 (in Chinese with English abstract)

[5] Levy A A, Feldman M. Increase in grain percentage in high-yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica, 1987, 36: 353-359

[6] Levy A A, Galili G, Feldman M. Polymorphism and genetic control of high molecular weight glutenin subunits in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity, 1988, 61: 63-72

[7] Nevo E, Payne P I. Wheat storage proteins: Diversity of HMW glutenin subunits in wild emmer from Israel. Theor Appl Genet, 1987, 74: 827-836

[8] Nevo E, Korol A B, Beiles A, Fahima T. Evolution of Wild Em-

mer and Wheat Improvement. Population Genetics, Genetic Re-

sources, and Genome Organization of Wheat’s Progenitor, Triti-

cum dicoccoides. Heidelberg, Germany: Springer-Verlag, 2002

[9] Xie C-J(解超杰), Sun Q-X(孙其信), Yang Z-M(杨作民). Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops (麦类作物学报), 2003, 23(2): 39-42 (in Chinese with English abstract)

[10] Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53: 57-60

[11] Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121-126

[12] Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123: 21-29

[13] Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161-167

[14] Ji X L, Xie C J, Ni Z F, Yang T M, Nevo E, Fahima T, Liu Z Y, Sun Q X. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 2008, 159: 385-390

[15] Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet, 2008, 116: 417-425

[16] Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica, 2004, 137: 203-223

[17] Liu Z, Sun Q, Ni Z, Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed, 1999, 118: 215-219

[18] Sharp P G, Kreis M, Shewry P R, Gale M D. Resistance to Puccinia recondite tritici in synthetic hexaploid wheats. Indian J Genet, 1988, 58: 263-269

[19] Röder M S, Korzun V, Gill B S, Ganal M W. The physical mapping of microsatellite markers in wheat. Genome, 1998, 41: 278-283

[20] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[21] Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697

[22] Song Q J, Fickus E W, Cregan P B. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet, 2002, 104: 286-293

[23] Guyomarc’h H, Sourdille P, Charmet G, Edwards K J, Bernard M. Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet, 2002, 104: 1164-1172

[24] Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114

[25] Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V, Röder M S, Gautier M F, Joudrier P, Schlatter A R, Dubcovsky J, Dela Pena R C, Khairallah M, Penner G, Hayden M J, Sharp P, Keller B, Wang R C C, Hardouin J P, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet, 2002, 105: 413-422

[26] Gupta P K, Rustgi S R, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics, 2003, 270: 315-323

[27] Yu J K, Dake T M, Singh S, Benscher D, Li W L, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818

[28] Sourdille P, Singh S, Cadalen T. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12-25

[29] Lincoln S, Daly M, Lander E. Constructing Genetic Maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, Cambridge, Masachussetts, USA. 1992

[30] Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)

[31] Yao G Q, Zhang J L, Yang L L, Xu H X, Jiang Y M, Xiong L, Zhang C Q, Zhang Z Z, Ma Z Q, Sorrells M E. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accession. Theor Appl Genet, 2007, 114: 351-358

[32] Chen X M, Luo Y H, Xia X C, Xia L Q, Chen X, Ren Z L, He Z H, Jia J Z. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed, 2005, 124: 225-228

[33] Wang C-Y(王长有), Ji W-Q(吉万全), Zhang G-S(张改生), Wang Q-Y(王秋英), Cai D-M(蔡东明), Xue X-Z(薛秀庄). SSR markers and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163-166 (in Chinese with English abstract)

[34] Singrün C, Hsam S L K, Zeller F J, Wenzel G, Mohler V. Locali- zation of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet, 2004, 109: 210-214

[35] Qiu Y C, Zhou R H, Kong X Y, Zhang S S, Jia J Z. Microsatellite mapping of a Triticum urartu Tum derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet, 2005, 111: 1524-1531

Perugini L D, Murphy J P, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2005, 116: 417-425

[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[5] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[6] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[7] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[8] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[9] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[10] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[11] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[12] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[13] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
[14] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[15] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!