欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 1958-1966.doi: 10.3724/SP.J.1006.2009.01958

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆蛋白质有关性状遗传的分离分析

刘顺湖1,3,周瑞宝2,*,盖钧镒1,*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2河南工业大学大豆精深加工研究所,郑州450052;3山东济宁学院,山东曲阜273155
  • 收稿日期:2009-05-07 修回日期:2009-08-25 出版日期:2009-11-12 网络出版日期:2009-09-17
  • 通讯作者: 盖钧镒, Tel: 025-84395405; E-mail: sri@njau.edu.cn; 周瑞宝, E-mail: rbzhou0615@163.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004CB7206,2006CB101708,2009CB118404),国家自然科学基金资助项目(30671266),国家高新技术研究发展计划(863计划)项目(2006AA100104),教育部高等学校创新引智计划项目(B08025),农业部公益性行业专项(200803060)资助。

Segregation Analysis for Inheritance of Protein Related Traits in Soybean[Glycine max(L.) Merr.]

LIU Shun-Hu1,3,ZHOU Rui-Bao2,*,GAI Jun-Yi1*   

  1. 1Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement,Nanjing 210095,China;2Soybean Processing Research Institute,Henan University of Technology,Zhengzhou 450012,China;3Shandong Jining College, Qufu 273155,China
  • Received:2009-05-07 Revised:2009-08-25 Published:2009-11-12 Published online:2009-09-17
  • Contact: GAI Jun-Yi, Tel: 025-84395405; E-mail: sri@njau.edu.cn; ZHOU Rui-Bao, E-mail: rbzhou0615@163.com

摘要:

采用科丰1×南农1138-2衍生的重组自交家系群体(RIKY)(Essex×兴县灰布支兴县灰布支回交自交衍生群体(BIEX)为材料,应用SDS-PAGE电泳测定11S7S11S/7S比值及其10个亚基组的相对含量,用凯氏(Kjeltec)自动定氮仪测定蛋白质含量、自动索氏(Soxtec)抽提仪测定油脂含量。结果表明: (1) 两群体蛋白质组分及其亚基组有关性状以及油脂与蛋油总量等均有不同程度超亲分离,双亲间存在不同程度的位点互补。(2) 蛋白质含量遗传,两群体均为1对主基因+多基因模型,主基因和多基因遗传率分别为31.3%~40.9%37.2%~53.7%。蛋油总量均为3对主基因+多基因模型,主、多基因遗传率分别为59.9%~66.6%23.2%~27.9%。油脂含量为2~3对主基因+多基因模型,两类遗传率分别为48.6%~71.7%4.2%~29.7%(3) 11S组分均为3对主基因+多基因模型,两类遗传率分别为14.3%~60.7%17.0%~50.7%7S组分均为3对主基因+多基因模型,两类遗传率分别为34.5%~44.1%21.5%~45.1%11S/7S比值遗传均为2对主基因+多基因模型,两类遗传率分别为56.6%~74.8%10.1%~20.1%(4) 11S4个亚基组依次分别为2~3对主基因+多基因、2对主基因+多基因、2对主基因+多基因、2~3对主基因+多基因模型。(5) 7S6个亚基组依次分别为1~2对主基因+多基因、2对主基因+多基因、2~3对主基因+多基因、3对主基因+多基因、1~2对主基因+多基因和2对主基因+多基因模型。所有16个性状都由主基因和多基因控制,其中有10个性状两群体具相同的主基因数,其他6个性状两群体间相差1对主基因,两群体间遗传模型大同小异。这些相关性状的育种既要利用主基因还必须利用微效多基因,要考虑兼用两者的育种方法。

关键词: 大豆, 蛋白质含量, 蛋油总量, 11S, 7S, 11S/7S, 亚基组, 主基因+多基因混合遗传模型分离分析

Abstract:

The quality and processing property of soy protein depend on its constitution of components and subunit groups, as well as their related traits. The recombinant inbred line population (RIKY) derived from Kefeng 1×Nannong 1138-2 and backcross inbred derived line population (BIEX) derived from (Essex×ZDD2315)×ZDD2315 were tested for their 16 traits related to protein components and their subunit groups, including protein content, protein plus fat content, 11S, 7S, 11S/7S ratio, four 11S subunit groups and six 7S subunit groups, by using Kjeltec, Soxtec and SDS-PAGE analysis. The data obtained were analyzed for the inheritance of the 16 traits by using segregation analysis based on mixed major gene plus polygene inheritance model. The results showed that there existed transgressive segregations in all the traits, which indicated the mutual complement among loci between the parents. One major gene plus polygene mixed model was detected for protein content in both populations with major gene heritability (MGH) 31.3%–40.9% and polygene heritability (PGH) 37.2%–53.7%; three major genes plus polygene model for protein plus fat content with MGH 59.9%–66.6% and PGH 23.2%–27.9%; two to three major genes plus polygene model for oil content with MGH 48.6%–71.7% and PGH 4.2%–29.7%. Three major genes plus polygene inheritance model was detected for 11S protein content with MGH 14.3%–60.7% and PGH 17.0%–50.7%; three major genes plus polygene model for 7S protein content with MGH 34.5%–44.1% and PGH 21.5%–45.1%; two major genes plus polygene model for 11S/7S ratio with MGH 56.6%–74.8% and PGH 10.1%–20.1%. Two to three major gene plus polygene, two major genes plus polygene, two major genes plus polygene and two to three major genes plus polygene inheritance models were detected for 11S-1 through 11S-4, respectively; one to two major genes plus polygene, two major genes plus polygene, two to three major genes plus polygene, three major genes plus polygene, one to two major genes plus polygene and two major genes plus polygene inheritance models were detected for 7S-1 through 7S-6, respectively. All of 16 traits are controlled by both major genes and minor genes. Among them, ten traits are controlled by same numbers of major genes in both populations and for the other six traits there is one major gene difference between the two populations. Thus, between the two populations, for each trait, the inheritance model is mainly similar in number of major genes while somewhat different in gene effect for those with same major gene numbers. Therefore, plant breeders have to pyramid both major genes and polygenes in breeding for protein content and related quality traits.

Key words: Soybean, Protein content, Protein plus fat content, 11S, 7S, 11S/7S, Subunit Group, Segregation analysis based on mixed major gene and polygene inheritance model

[1] Liu S H, Zhou R B, Tian S J, Gai J Y. A Study on subunit groups of soybean protein extracts under SDS-PAGE. J Am Fat Chem Soc, 2007, 84: 793-801

[2] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003 (in Chinese)

[3] Zhan Q-W(詹秋文), Gai J-Y(盖钧镒), Zhang Y-M(章元明), Yu D-Y(喻德跃). Inheritance of resistance of soybeans to leaf-eating insects. Sci Agric Sin (中国农业科学), 2002, 35(8): 1016-1020 (in Chinese with English abstract)

[4] Zhan Q-W(詹秋文), Gai J-Y(盖钧镒), Zhang Y-M(章元明), Sun Z-D(孙祖东). Development and expression process of inheritance of resistance to cotton worm (Prodenia litura) in soybeans. Acta Genet Sin (遗传学报), 2001, 28(10): 956-963 (in Chinese with English abstract)

[5] Wu Y-C(吴业春). Evaluation of soybean resistance to leaf-feeding insects and inheritance of antibiosis to cotton worm (Prodenia litura). MS Dissertation of Nanjing Agricultural University, 2003 (in Chinese with English abstract).

[6] Luo Q-Y(罗庆云), Yu B-J(於丙军), Liu Y-L(刘友良), ZhangY-M(章元明), Xue Y-L(薛艳玲), Zhang Y(张艳). The mixed inheritance analysis of salt tolerance in cultivars of Glycine max. Soybean Sci (大豆科学), 2004, 23(4): 239-244 (in Chinese with English abstract)
[7] Liu Y(刘莹). Identification of Tolerance to Rhizosperical Stresses and Inheritance and QTL Locating of Related Root Traits in Soybean
[Glycine max (L) Merr.]. PhD Dissertation of Nanjing Agricultural University, 2005 (in Chinese with English abstract)
[8] Luo W-G(卢为国). Soybean Cyst Nematode (Heterodera glycines ichinohe) Races and Inheritance and Gene Mapping of Resistance of Soybean to the Disease in Huang-Huai Valley. PhD Dissertation of Nanjing Agricultural University, 2005 (in Chinese with English abstract)
[9] Zheng Y-Z(郑永战). Variability, Inheritance, and QTL Mapping of Fatty Traits in Chinese Germplasm of Soybean. PhD Dissertation of Nanjing Agricultural University, 2006 (in Chinese with English abstract)

[10] Gai J-Y(盖钧镒). Methods of Experimental Statistics (试验统计方法). Beijing: China Agriculture Press, 2000

[11] Gai J-Y(盖钧镒). Indicators related to genetic structure changes of plant germplasm population. J Plant Genet Resour (植物遗传资源学报), 2005, 6(1): 1-8 (in Chinese with English abstract)

[12] Zhang Y-M(章元明), Gai J-Y(盖钧镒). Identification of mixed major genes and polygenes inheritance model of quantitative traits by using DH or RIL population. Acta Genet Sin (遗传学报), 2000, 27(7): 634-640 (in Chinese with English abstract)
[13] He X-H(何小红), Gai J-Y(盖钧镒). Segregation analysis of quantitative traits in backcross inbred line population. Acta Agron Sin (作物学报), 2006, 32(2): 210-216 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!