欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2064-2072.doi: 10.3724/SP.J.1006.2009.02064

• 耕作栽培·生理生化 • 上一篇    下一篇

栽培小麦Brock和京411感染白粉菌后蛋白质组的变化

于振1,李倩1,赵建叶1,江帆1,王振英1,*,彭永康1,*,解超杰2,刘志勇2,孙其信2,杨作民2   

  1. 1天津师范大学化学与生命科学学院/细胞遗传与分子调控天津市重点实验室,天津300387;2中国农业大学农学与生物技术学院,北京100193
  • 收稿日期:2009-02-12 修回日期:2009-05-08 出版日期:2009-11-12 网络出版日期:2009-09-10
  • 通讯作者: 王振英, E-mail: wzycell@yahoo.com.cn; 彭永康, E-mail: pykcell@yahoo.com.cn
  • 基金资助:

    本研究由国家自然科学基金(30771346),天津市科委重点项目(08JCZDJC16500),天津市教委重点项目(2006ZD08)资助。

Proteome Changes in Wheat Varieties Brock and Jing 411 after Inoculating Blumenia graminis

YU Zhen1,LI Qian1,ZHAO Jian-Ye1,JIANG Fan1,WANG Zhen-Ying1,*,PENG Yong-Kang1*,XIE Chao-Jie2,LIU Zhi-Yong2,SUN Qi-Xin2,YANG Zuo-Min2   

  1. 1College of Chemistry and Life Science/Tianjin Key Laboratory of Cyto-Genetical and Molecular Regulation,Tianjin Normal University,Tianjin 300387,China;2College of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China
  • Received:2009-02-12 Revised:2009-05-08 Published:2009-11-12 Published online:2009-09-10
  • Contact: WANG Zhen-Ying, E-mail: wzycell@yahoo.com.cn;PENG Yong-Kang, E-mail: pykcell@yahoo.com.cn

摘要:

用华北地区流行的白粉菌15号生理小种,感染强抗白粉病的栽培小麦Brock和对白粉病敏感的小麦京411,通过蛋白质组技术分析其差异蛋白。结果表明,Brock经白粉菌感染12 h后,至少有6个蛋白质斑点(43 kD/pI 6.743 kD/pI 6.943 kD/pI 7.228 kD/pI 5.826 kD/pI 5.526 kD/pI 6.5)表达量明显增加;感染3 d后,有5个蛋白质斑点(48 kD/pI 5.643 kD/pI 6.943 kD/pI7.228 kD/pI5.826 kD/pI5.5)表达量增加;感染5 d后,有12个新的蛋白质斑点(16 kD/pI 7.642 kD/pI 6.540 kD/pI 4.840 kD/pI 4.631 kD/pI 5.716 kD/pI 4.620 kD/pI 8.350 kD/pI 6.748 kD/pI 6.628 kD/pI 5.723 kD/pI 4.825 kD/pI 4.7 )被诱导合成,2种蛋白质斑点(26 kD/pI 4.617 kD/pI 7.9)消失。京411经白粉菌感染12 h后,3个蛋白质斑点(21 kD/pI 6.418 kD/pI 5.414 kD/pI 7.0)表达量增加;感染3 d后,有2个蛋白质斑点(80 kD/pI 5.414 kD/pI 7.0)表达量增加,1个蛋白质斑点(16 kD/pI 5.4)表达量下降;感染5 d后,有3个蛋白质斑点(50 kD/pI 7.340 kD/pI 7.324 kD/pI 7.2)表达量增加,2个斑点(40 kD/pI 4.814 kD/pI 7.2)表达量下降,但没有发现新的蛋白质合成。对Brock中诱导产生的12个新蛋白质斑点,利用MALDI-TOF-MS方法,于NCBI进行数据查询,其中有6个分别属于F-box亮氨酸高度重复蛋白、重金属转运/解毒蛋白、β-1,3-葡聚糖酶(两个同工体)β-1,3-葡聚糖酶前体、锌指蛋白。功能查询表明,上述6个蛋白参与细胞周期调控、发育、激素响应、基因转录和病害防御等。推测Brock和京411感染白粉菌后,出现的蛋白质组变化可能与各自的抗、感白粉病特性有关。

关键词: 白粉病, 小麦, 蛋白质组, ß-1,3-葡聚糖酶, MALDI-TOF-MS

Abstract:

The protein of resistant wheat (Triticum aestivum L.) variety Brock and susceptible variety Jing 411 was extracted from leaves and separated using two-dimensional polyacrylamid gel electrophoresis (2-DE) at 12 h, 3 d, and 5 d after inoculating prevalent race No. 15 of B. graminis f.sp. tritici. In Brock, compared with contral with no pathogen inoculation, at least six protein spots of 43 kD/pI 6.7, 43 kD/pI 6.9, 43 kD/pI 7.2, 28 kD/pI 5.8, 26 kD/pI 5.5 and 26 kD/pI 6.5 obviously increased in content at 12 h time point; and five protein spots of 48 kD/pI 5.6, 43 kD/pI 6.9, 43 kD/pI 7.2, 28 kD/pI 5.8 and 26 kD/pI 5.5 increased in content at 3 d time point. At 5d after inoculation, 12 novel proteins were induced, viz. 16 kD/pI 7.6, 42 kD/pI 6.5, 40 kD/pI 4.8, 40 kD/pI 4.6, 31 kD/pI 5.7, 16 kD/pI 4.6, 20 kD/pI 8.3, 50 kD/pI 6.7, 48 kD/pI 6.6, 28 kD/pI 5.7, 23 kD/pI 4.8 and 25 kD/pI 4.7; simultaneously, two protein spots that were observed earlier disappeared. In Jing 411, three protein spots of 21 kD/pI 6.4, 18 kD/pI 5.4, and 14 kD/pI 7.0 increased in content at 12 h after inoculation. At the 3 d time point, two protein spots of 80 kD/pI 5.4 and 14 kD/pI 7.0 increased in content, however, one protein spot (16 kD/pI 5.4) showed decrease in protein abundance. At the 5 d time point, three protein spots of 50 kD/pI 7.3, 40 kD/pI 7.3, and 24 kD/pI 7.2 and two protein spots of 40 kD/pI 4.8 and 14 kD/pI 7.2 showed increase and decrease in protein abundance, respectively, but there were no novel protein spots induced. Among the 12 novel protein spots induced in Brock, six spots were identified using MALDI-TOF-MS and NCBI database searching, which were F-box and leucine-rich repeat protein, heavy metal transport/detoxification protein, endo-beta-1,3-glucanase (two isozymes), beta-1,3-glucanase precursor and zinc finger protein. These proteins are involved in a wide range of physiological processes, such as cell cycle control, development, phytohormone response, and resistance to fungal disease. Thus, the proteome changes in Brock and Jing 411 leaves are probably associated with the resistance and susceptibility to powder mildew, respectively.

Key words: Powdery mildew, Wheat, Proteome, Beta-1,3-glucanase, MALDI-TOF-MS


[1] Liu J-Y(刘金元), Tao W-J(陶文静), Duan X-Y(段霞瑜), Xiang Q-J(向齐君), Liu D-J(刘大钧), Chen P-D(陈佩度). Molecular marker assisted identification of Pm genes involved in the powdery mildew resistant wheat cultivars (lines). Acta Phytopathol Sin (植物病理学报), 2000, 30(2): 133-139 (in Chinese with English abstract)

[2] Liu J-Y(刘金元), Liu D-J(刘大钧). Progress of the study on wheat powdery mildew resistant genes. Acta Phytopathol Sin (植物病理学报), 2000, 30(4): 289-295 (in Chinese with English abstract)

[3] Yu L, Niu J S, Ma Z Q, Chen P D, Qi L L, Liu D J. Cloning, characterization and chromosome localization of two powdery mildew resistance-related gene sequences from wheat.Acta Bot Sin, 2002, 44: 1438-1444

[4] Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538

[5] Wang Z Y, Zheng Q, Peng Y K, Xie C J, Sun Q X, Yang Z M. Identification of random amplified polymorphism DNA and simple sequence repeat markers linked to powdery mildew resistance in common wheat cultivar Brock. Plant Prod Sci, 2004, 7: 319-323

[6] Wang Z Y, Zhao P, Chen H, Peng Y K, Xie C J, Sun Q X, Yang Z M. Random amplified polymorphic DNA and sequence characterized amplified region marker linked to unknown powdery mildew resistance gene in wheat cultivar Brock. Plant Prod Sci, 2005, 8: 578-585

[7] Wang Z-Y(王振英), Zhao H-M(赵红梅), Hong J-X(洪敬欣), Chen L-Y(陈丽媛), Zhu J(朱婕), Li G(李刚), Peng Y-K(彭永康), Xie C-J(解超杰), Liu Z-Y(刘志勇), Sun Q-X(孙其信), Yang Z-M(杨作民). Identification and analysis of four novel molecular markers linked to powdery mildew resistance gene Pm21 in 6VS chromosome short arm of Haynaldia villosa. Acta Agron Sin (作物学报), 2007, 33: 605-611 (in Chinese with English abstract)

[8] Zhang W-J(张维佳), Li C-Z(李纯正), Huang H-Q(黄海泉), Wang Z-Y(王振英), Peng Y-K(彭永康). Different proteins in mitochondrial proteome of T-tape maize cytoplasmic male-sterile line and its maintainer line. J Mol Cell Biol (分子细胞生物学报), 2007, 40(6): 410-418 (in Chinese with English abstract)

[9] Balmer Y, Vensel W H, DuPont F M, Buchanan B B, Hurkman W J. Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot, 2006, 57: 1591-1602

[10] Zhao C F, Wang J Q, Cao M L, Zhao K, Shao J M, Lei T T, Yin J N, Hill G G, Xu N Z, Liu S Q. Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics, 2005, 5: 961-972

[11] Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5: 3162-3172

[12] Yan S P, Tang Z C, Su W A, Sun W N. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235-244

[13] Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131-1145

[14] Frédérique R, Pascale G, Dominique V, Michel Z. Protein changes in response to progressive water deficit in maize. Plant Physiol, 1998, 117: 1253-1263

[15] Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4: 1122-1133

[16] Antonio J C, Christine C, Nathalie Z, Christian M, Emmanuelle L, Alain V D, Christophe C. Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot, 2005, 56: 2783-2795

[17] Sun T Kim, Sang G K, Du H H, Sun Y K, Han J K, Byung H L, Jeung J L, Kyu Y K. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus Magnaporthe grisea.Proteomics, 2004, 4: 3569-3578

[18] Curto M, Camafeita E, Lopez J A, Maldonado A M, Rubiales D, Jorrín J V. A proteomic approach to study pea (Pisum sativum)responses to powdery mildew (Erysiphe pisi). Proteomics, 2006, 6: 163-174

[19] Wang Y, Yang L M, Xu H B, Li Q F, Ma Z Q, Chu C G. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics, 2005, 5: 4496-4503

[20]Feng D-S(封德顺), Xu Q-Y(徐勤迎), Wang H-G(王洪刚), Tian J-C(田纪春). Changes of protein in wheat leaf after the infection of powdery mildew. Acta Agric Boreali-Sin (华北农学报),2007, 22:123-126 (in Chinese with English abstract)

[21] Wang Z, Zhao P, Chen H, Peng Y, Xie C, Sun Q, Yang Z. Identification of RAPD markers and development of SCAR markers linked to a powdery mildew resistance gene, and their location on chromosome in wheat cultivar Brock. Plant Prod Sci, 2005, 8: 578-585

[22] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anual Biochem,1976, 72: 248-254

[23] O’Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem,1975, 250: 4007-4021

[24] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685

[25] Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylami de gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis, 1988, 9: 255-262

[26] Xie D X, Feys B F, James S, Nieto M, Turner J G.COI1: An Arabidopsis gene required for jasmonate regulateddefense and fertility. Science, 1998, 280: 1091-1094

[27] Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J W, Elledge S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86: 263-274

[28] Ward E R, Payne G B, Moyer M B. Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol, 1991, 96: 390-397

[29] Selitrennikoff C P. Antifungal proteins. Appl Environ Microbiol, 2001, 67: 2883-2894

[30] Anfoka G, Buchenauer H. Systemic acquired resistance in tomato against Phytophthora infestans by pre-inoculation with tobacco necrosis virus. Physiol Mol Plant Pathol, 1997, 50: 85-101

[31] Esquerré-Tugaé M T, Boudart G, Dumas B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem, 2000, 38: 157-163

[32] Klarzynski O, Plesse B, Joubert J M. Linear β-1,3-glucanase are elicitors of defense responses in tobacco. Plant Physiol, 2000, 124: 1027-1037

[33] Ham K S, Wu S C, Darvill A G. Fungal pathogens secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-β-1,3-glucanase. Plant J, 1997, 11: 169-179
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!