欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 246-254.doi: 10.3724/SP.J.1006.2009.00246

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生栽培种EST-SSRs分布特征及应用研究

梁炫强;洪彦彬;陈小平;刘海燕;周桂元;李少雄;温世杰   

  1. 广东省农业科学院作物研究所,广东广州510640
  • 收稿日期:2008-04-21 修回日期:2008-09-11 出版日期:2009-02-12 网络出版日期:2008-12-10
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z156),广东省自然科学基金项目(06025389,07117967)资助

Characterization and Application of EST-SSRs in Peanut(Arachis hypogaea L.)

LIANG Xuan-Qiang,HONG Yan-Bin,CHEN Xiao-Ping,LIU Hai-Yan,ZHOU Gui-Yuan,LI Shao-Xiong,WEN Shi-Jie   

  1. Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640,Guangdong,China
  • Received:2008-04-21 Revised:2008-09-11 Published:2009-02-12 Published online:2008-12-10

摘要:

利用自行开发的20 160条花生栽培种荚果EST, 通过序列拼接, 获得8 289条无冗余EST。经搜索, 共检测出740SSR位点, 分布于651EST, 发生频率为7.8%, 平均每6.8 kb EST序列含一个SSR位点。功能注释结果表明具生物过程、分子功能和细胞组分的EST分别为7311156条。在花生荚果EST-SSR, 三核苷酸重复类型出现频率最高, 占总SSR62.8%, 其次是二核苷酸重复类型, 占总SSR33.6%。在出现的26类重复基序中, AG/TC重复基序出现频率最高, AAG/TTC次之。利用Primer premier 5651条含有SSREST中共设计引物233, 从中随机选取100对引物检测EST-SSR花生栽培种中的多态性及在野生种中的可转移性。结果表明, 86对引物在供试的22个花生栽培品种中得到有效扩增, 其中10对在栽培种中具有多态性, 每对引物检测出的等位基因数2~3, 平均2.2个。可扩增引物在野生种中的可转移率为12.5%~100%,平均96%在野生种间检测出多态性的引物76对,每对引物检测出等位基因2~9, 平均4.06个。

关键词: 花生栽培种, EST, SSR, 开发

Abstract:

Peanut (Arachis hypogaea L.) is one of the most important oilseed crops in China. Although there is a great difference in growth habit, growth stage, and agronomic traits for peanuts, there is little polymorphism on the molecular level of RFLP, RAPD and AFLP. With development of peanut EST, a vast amount of available EST sequence has been documented. The objective of this study was to investigate distribution characteristics of EST-SSRs. Developed with a total of 20 160 EST from cDNA library of two peanut cultivars, There were 651 SSR-containing EST identified, on average, one SSR had 6.8 kb of EST sequence with tri-nucleotide motif (62.8%) as the most abundant motif types followed by di- (33.6%), tetra- (1.9%), hexa- (0.8%) and penta-nucleotide (0.8%). The top six motif types with high frequency included AG/TC (25.8%), AAG/TTC (19.1%), AAT/TTA (10.1%), ACC/TGG (7.4%), ACT/TGA (7.0%) and AT/TA (6.1%). Based on the 651 SSR-EST, a total of 233 primer pairs were successfully designed and a subset (100 pairs) were synthesized to test the amplification and polymorphism in 22 peanut cultivars, and to assess the transferability among 16 different wild species. The results showed that 86 primer pairs were amplified effectively in peanut cultivars, 10 primer pairs of which exhibited polymorphism with 2–3 alleles, with an average of 2.2 alleles, were detected. The cross-transferability of cultivated peanut EST-SSR markers to peanut wild species was very high, ranging from 12.5 to 100% with an average of 96%. Seventy-six markers exhibited polymorphism in wild species with 2–9 alleles, and an average of 4.06 alleles. The results indicated that peanut EST could be a resource for developing SSR. The high level of transferability to wild species also implied that EST-SSR is a potentially useful marker for genetic studies in wild species.

Key words: Peanut(Arachis hypogaea :.), EST, mining, SSR

[1]Krapovickas A, Gregory W C. Taxonomia del genero Arachis (Leguminosae). Bonplandia, 1994, 8: 1-186
[2]Kochert G, Halward T, Branch W D, Simpson C E. RFLP vari-ability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991, 81: 565-570
[3]Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (PAPD) assay. Genome, 2000, 43: 656-660
[4]Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect: Arachis species as revealed by AFLP mark-ers. Genome, 2005, 8: 1-11
[5]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064-1070
[6]Kantety R V, La Rota M, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510
[7]Bozhko M, Riegel R, Schubert R, Muller-Starck G. A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Mol Ecol, 2003, 12: 3147-3155
[8]Schubert R, Starck G M, Riegel R. Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies L. Karst. Theor Appl Genet, 2001, 103: 1223-1231
[9]Brown G R, Kadel E E, Bassoni D L, Kiehne K L, Temesgen B, van Buijtenen J P, Sewell M M, Marshall K A, Neale D B. An-chored reference loci in loblolly pine (Pinus taeda L.) for inte-grating pine genomics. Genetics, 2001, 159: 799-809
[10]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[11]Varshney P K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Grane A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202
[12]Gadaleta A, Mangini G, Mulè G, Blanco A. Characterization of dinucleotide and trinucleotide EST-derived microsatellites in the wheat genome. Euphytica, 2007, 153: 73-85
[13]Kantety R V, La Rota M, Matthews D E, Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510
[14]Scott K D, Eggler P, Seaton G, Rossetto M, Ablett E M, Lee L S, Henny R J. Analysis of SSRs derived from grape ESTs. Theor Appl Genet, 2000, 100: 723-726
[15]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[16]Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom, 2003, 270: 315-323
[17]Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W. The construction of a genetic linkage map of red rasp-berry (Rubus idaeus subsp. idaeus) based on AFLPs, ge-nomic-SSR and EST-SSR markers. Theor Appl Genet, 2004, 109: 740-749
[18]Lu S-D(卢圣栋). Current Protocols for Molecular Biology (现代分子生物学实验技术). Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1999. pp 101-136 (in Chinese)
[19]Proite K, Leal-Bertioli S C, Bertioli D J. ESTs from a wild Ara-chis species for gene discovery and marker development. BMC Plant Biol, 2007, 7: 7
[20]Kantety R V, La Rota M, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510
[21]Varshney R K, Graner A, Sorrells M E. Genomic microsatellite markers in plants: Features and applications. Trends Biotechnol, 2005, 23: 48-55
[22]Eujayl I, Sledge M K, Wang L. Medicago truncatula EST-SSRs reveals cross-species genetic markers for Medicago spp. Theor Appl Genet, 2004, 108: 414-422
[23]Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245-261
[24]Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847-854
[25]Li X-B((李小白), Cui H-R(崔海瑞), Zhang M-L(张明龙). De-tecting the genetic diversity of Brassica napus by EST-SSRs. J Agric Biotechnol (农业生物技术学报), 2007, 15(4): 661-667(in Chinese with English abstract)
[26]Aggarwal R K, Hendre P S, Varshney R K. Identification, char-acterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet, 2007, 114: 359-372
[27]Guo W, Wang W, Zhou B. Cross-species transferability of Gar-boreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet, 2006, 112: 1573-1581
[28]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064-1070
[29]Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites de-rived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 713-722
[30]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[31]Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P. Study of simple sequence repeat (SSR) markers from wheat expressed sequences tags (ESTs). Theor Appl Genet, 2004, 109: 800-805
[32]Areshchenkova T, Ganal M W. Comparative analysis of poly-morphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet, 2002, 104: 229-235
[33]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[34]Ramsay L, Macaulay M, Ivanissivich S, MacLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, Maes-tri E, Marniorlin N, Sjakste T, Ganal M, Powell W, Powell W, Waugh R. A simple sequence repeat-based linkage map of barley. Genetics, 2000, 156: 1997-2005
[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[3] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[4] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[5] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[6] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[7] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[8] 张毅,许乃银,郭利磊,杨子光,张笑晴,杨晓妮. 我国北部冬麦区小麦区域试验重复次数和试点数量的优化设计[J]. 作物学报, 2020, 46(8): 1166-1173.
[9] 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996.
[10] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[11] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[12] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[13] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[14] 郝志明,耿妙苗,温树敏,闫桂军,王睿辉,刘桂茹. 小麦抗麦红吸浆虫基因标记的开发与验证[J]. 作物学报, 2020, 46(02): 179-193.
[15] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!