欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 255-261.doi: 10.3724/SP.J.1006.2009.00255

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻千粒重和垩白粒率的QTL及其互作分析

周立军1;江玲1;刘喜1;陈红1;陈亮明1;刘世家1;万建民1,2*   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室/江苏省植物基因工程技术研究中心,江苏南京210095;2中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2008-07-31 修回日期:2008-10-08 出版日期:2009-02-12 网络出版日期:2008-12-10
  • 通讯作者: 万建民
  • 基金资助:

    本研究由国家自然科学基金项目(30500315),用人才国家高技术研究发展计划(863计划)项目(2006AA100101,2006AA10Z1B1),国家科技支撑计划项目(2006BAD01A01),江苏省高技术招标项目(BG2006301),江苏省农业种质资源基因库项目[sx(2007)g02],高等学校学科创新引智计划项目(B08025)资助

QTL Mapping and Interaction Analysis for 1000-Grain Weight and Percentage of Grains with Chalkiness in Rice

ZHOU Li-Jun1,JIANG Ling1,LIU Xi1,CHEN Hong1,CHEN Liang-Ming1,LIU Shi-Jia1,WAN Jian-Min1,2,*   

  1. 1State Key Laboratory of Crop Genetics and Germplasm enhancement/Jiangsu Plant Gene  Engineering Research Center, Nanjing Agricultural University, Nanjing 210095,China;2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081,China
  • Received:2008-07-31 Revised:2008-10-08 Published:2009-02-12 Published online:2008-12-10
  • Contact: WAN Jian-Min

摘要:

产量因子千粒重和稻米品质指标垩白粒率密切相关。本研究以越光/Kasalath//越光BIL群体为材料,分析千粒重和垩白粒率的相关性、QTL、上位性互作及其环境的互作效应。相关分析表明,群体千粒重和垩白粒率在2005年和2006年均呈极显著正相关,相关系数分别为0.420.35 (P<0.001)2年共检测到千粒重QTL 11个,其中5个在2年重复检测到,5个具有环境互作效应;千粒重上位性互作8对,7对与环境存在互作。垩白粒率QTL 6个,3个具有环境互作效应;上位性互作9对,其中4对具有上位性环境互作效应。比较分析发现3个主效QTL同时控制千粒重和垩白粒率的表现,千粒重和垩白粒率的增效等位基因来自同一亲本;1对上位性互作同时对千粒重和垩白粒率有相同的影响。一些与垩白粒率不相关的千粒重主效QTL,如qTGW-3cqTGW-4aqTGW-6b,可为育种所利用。对利用QTL定位结果进行千粒重和垩白粒率分子辅助选择育种进行了探讨。

关键词: 水稻, 千粒重, 垩白粒率, QTL, 上位性互作, QTLX环境互作效应

Abstract:

There is a close correlation between 1000-grian weight (TGW, an important yield factor) and percentage of grains with chalkiness (PGWC, an important rice quality index). In this study, a backcross inbred lines (BIL) population derived from a cross between Koshihikari (japonica) and Kasalath (indica) was used to detect correlations and among interactions QTL, epistatic and environment on TGW and PGWC. Correlation analysis showed that there was a significantly positive correlation between TGW and PGWC in the BIL population and the correlation coefficients were 0.42 and 0.35 (P<0.001) in 2005 and 2006, respectively. A total of eleven QTLs and eight epistatic interactions for TGW were detected in 2005 and 2006; of them, five QTLs were repeatedly detected in the two years, and five QTLs and seven epistatic interactions had significantly QE interaction. A total of six QTLs and nine epistatic interactions for PGWC were detected in 2005 and 2006; of them, three QTLs and four epistatic interactions had markedly QE interaction. Three main-effect QTLs simultaneously controlling TGW and PGWC were detected, and their alleles increasing TGW and PGWC were from the same parent; one epistatic interaction had similar effects on TGW and PGWC. Some main-effect QTLs, controlling TGW but not PGWC, such as qTGW-3c, qTGW-4a,and qTGW-6b, could be used for breeding. The strategy was discussed in using QTL mapping results for the marker-assisted selection breeding of TGW and PGWC.

Key words: Rice, 1000-grain weight (TGW), Percentage of grains with chalkiness(PGWC), QTL, epistatic interaction, QTLXenvironment interaction(QE)

[1]You A Q, Lu X G, Jin H J, Ren X, Liu K, Yang G C, Yang H Y, Zhu L L, He G C. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics, 2006, 172: 1287-1300
[2]Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649-659
[3]Yang S-H(杨仕华), Cheng B-Y(程本义), Shen W-F(沈伟峰), Liao X-Y(廖西元). Progress and strategy of the improvement of indica rice varieties in the Yangtze Valley of China. Chin J Rice Sci (中国水稻科学), 2004, 18(2): 89-93 (in Chinese with English abstract)
[4]Min J(闵捷), Zhu Z-W(朱智伟), Xu L(许立), Mou R-X(牟仁祥). Studies on grain quality and high quality rate of japonica hybrid rice in China. Hybrid Rice (杂交水稻), 2007, 22(1): 67-70 (in Chinese with English abstract)
[5]Cheng F M, Zhong L J, Wang F, Zhang G P. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem, 2005, 90: 39-46
[6]Del Rosario A R, Briones V P, Vidal A J, Juliano B O. Composi-tion and endosperm structure of developing and mature rice ker-nel. Cereal Chem, 1968, 45: 225-235
[7]Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehen-sive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 2007, 144: 258-277
[8]Tan Y F, Xing Y Z, Li J X, Yu S B, Xu C G, Zhang Q F. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet, 2000, 101: 823-829
[9]Kang H G, Park S H, Matsuoka M, An G H. White-core en-dosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J, 2005, 42: 901-911
[10]Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J H, Jane J L, Miyao A, Hirochika H, Nakamura Y. Characterization of SSIIIa-deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa defi-ciency in the rice endosperm. Plant Physiol, 2007, 144: 2009-2023
[11]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630
[12]Rice Genome Resource Center (RGRC). Koshihikari/Kasalath Backcross Inbred Lines (BIL) 182 lines.2004.3.20, available at http://www.rgrc.dna.affrc.go.jp/ineKKBIL 182.htm1. 2002
[13]NSPRC (National Standard of People Republic of China). GB/T 17891-1999, High Quality Paddy. Beijing: Standards Press of China, 1999
[14]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTL with epistatic effects and QTL environment interactions by mixed lin-ear model approaches. Theor Appl Genet, 1999, 99: 1255-1264
[15]Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTL on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248-257
[16]Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334-1346
[17]Li Z F, Wan J M, Xia J F, Zhai H Q. Mapping quantitative trait loci underlying appearance quality of rice grains. Acta Genet Sin, 2003, 30: 251-259
[18]Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effects and additive-by-additive epistatic ef-fects of QTLs for yield traits in a recombinant inbred line popula-tion of rice. Theor Appl Genet, 2002, 105: 1137-1145
[19]Gao Y M, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects. Theor Appl Genet, 2007, 115: 325-333
[20]Septiningsih E M, Prasetiyono J, Lubis E, Tai T H, Tjubaryat T, Moeljopawiro S, McCouch S R. Identification of quantitative trait loci for yield and yield components in an advanced back-cross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107: 1419-1432
[21]Hittalmani S, Huang N, Venuprasad B C R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivan-taneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G, Khush G S. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107: 679-690
[22]Brondani C, Range P H N, Brondani R P V, Ferreira M E. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa L.) using microsa-tellite markers. Theor Appl Genet, 2002, 104: 1192-1203
[23]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a puta-tive transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!