Peanut (Arachis hypogaea L.),SSR,Genetic linkage map,"/> 花生栽培种SSR遗传图谱的构建
欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 395-402.doi: 10.3724/SP.J.1006.2009.00395

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生栽培种SSR遗传图谱的构建

洪彦彬;梁炫强*;陈小平;刘海燕;周桂元;李少雄;温世杰   

  1. 广东省农业科学院作物研究所,广东广州 510640
  • 收稿日期:2008-05-16 修回日期:2008-09-11 出版日期:2009-03-12 网络出版日期:2009-01-15
  • 通讯作者: 梁炫强
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z156),广东省自然科学基金项目(06025389,07117967)资助

Construction of Genetic Linkage Map in Peanut(Arachis hypogaea L.) Cultivars

HONG Yan-Bin;LIANG Xuan-Qiang*;CHEN Xiao-Ping;LIU Hai-Yan;ZHOU Gui-Yuan;LI Shao-Xiong;WEN Shi-Jie   

  1. Crops Research Institute, GuangdongAcademy of Agricultural Sciences,Guangzhou 510640,China
  • Received:2008-05-16 Revised:2008-09-11 Published:2009-03-12 Published online:2009-01-15
  • Contact: LIANG Xuan-Qiang

摘要:

花生栽培种品种间分子多态性相对缺乏, 至今未构建出较完整的分子遗传图谱。本研究以粤油13和阜95-5为亲本, 通过杂交构建包含184F6重组自交系的遗传作图群体。采用652genomic-SSR引物和392EST-SSR引物对亲本进行多态性检测, 从中筛选出121对多态性引物, 在亲本中共检测到123个多态性位点。利用作图群体对多态性SSR位点进行遗传连锁分析, 获得包含108SSR标记(102genomic-SSR标记和6EST-SSR标记), 涉及20个连锁群, 总长568 cM, 平均图距为6.45 cM的花生栽培种遗传图谱。与前人构建的花生野生种(A. duranensis × A. stenosperma, AA genome)SSR遗传图谱比较, 初步确定本研究构建的遗传图谱中有11个连锁群与野生种遗传图谱的6个连锁群存在同源关系。

关键词: 花生, SSR, 遗传图谱

Abstract:

Molecular genetic map is a fundamental organizational tool for genomic research. However, a comprehensive genetic linkage map for peanut cultivars has not yet been developed due to extremely low levels of DNA polymorphisms in cultivated peanut. In this study, 184 recombinant inbred lines (RIL), derived from a cross between two Spanish type peanut cultivars (Yueyou 13 × Fu95-5), were used as mapping population. A total of 652 pairs of genomic-SSR primers and 392 pairs of EST-SSR primers were used to detect the polymorphisms between the parental cultivars. Of them, 121 SSR primer pairs amplified 123 segregating loci and were selected to analyze the RIL population. A genetic linkage map consisting of 108 SSR loci (102 genomic-SSR and 6 EST-SSR) in 20 linkage groups and covers 568 cM with an average distance of 6.45 cM of intermaker was constructed. By comparing the SSR genetic map of Arachis (A. duranensis × A. stenosperma) with AA genome, 11 linkage groups in the linkage map constructed in this study were confirmed to have homology with 6 linkage groups of wild peanut species.

Key words: Peanut (Arachis hypogaea L.)')">Peanut (Arachis hypogaea L.), SSR, Genetic linkage map

[1]Kochert G, Halward T, Branch W D, Simpson C E. RFLP variability in peanut(Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991, 81: 565-570
[2]Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (PAPD) assay. Genome, 2000, 43: 656-660
[3]Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 8: 1-11
[4]Herselman L, Thwaites R, Kimmins F M, Courtois B, van der Merwe P J, Seal S E. Identification and mapping of AFLP markers linked to peanut(Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet, 2004, 109: 1426-1433
[5]Gimenes M A, Hoshino A A, Barbosa A V, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol, 2007, 7: 9
[6]Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic differences in peanut cultivated types (Arachis hypogaea) revealed by SSR polymorphism. Mol Plant Breed (分子植物育种), 2008, 6(1): 71-78 (in Chinese with English abstract)
[7]Jiang H-F(姜慧芳), Chen B-Y(陈本银), Ren X-P(任小平), Liao B-S(廖伯寿), Lei Y(雷永), Fu T-D(傅廷栋), Ma C-Z(马朝芝), Mace E, Crouch J H. Identification of SSR markers linked to bacterial wilt resistance of peanut with RIL. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(1): 26-30(in Chinese with English abstract)
[8]Kantety R V, La Rota M, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510
[9]Lu S-D(卢圣栋). Current Protocols for Molecular Biology (现代分子生物学实验技术). Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1999. pp 101-136
[10]Hopkins M S, Casa A M, Wang T, Mitchell S E, Dean R E, Kochert G D, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSR) in peanut. Crop Sci, 1999, 39: 1243-1247
[11]Palmieri D A, Hoshino A A, Bravo J P, Lopes C R, Gimenes M A. Isolation and characterization of microsatellite loci from the forage species Arachis Pintoi (Genus Arachis). Mol Ecol Notes, 2002, 2: 551-553
[12]He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biol, 2003, 3: 3
[13]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut(A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064-1070
[14]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F, Ferreira M E. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11
[15]Moretzsohn M C, Leoi L, Proite K, Guimaras P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060-1071
[16]Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes, 2005, 5: 77-79
[17]Martins W, Sousa D D, Proite K, Guinaraes P, Moretzsohn M, Bertioli D. New softwares for automated microsatellite marker development. Nucl Acids Res, 2006, 34:1-4
[18]Varshney R K, Graner A, Sorrells M E. Genetic microsatellite markers in plants: features and applications. Trends Biotechnol, 2005, 23: 48-55
[19]Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploids to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837
[20]Halward T M, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384
[21]Sewell M M, Sherman B K, Neale D B. A consensus map for loblolly (Pinustaeda L.): I. Construction and intergration of individual linkage maps from two outbred three-generation pedigree. Genetics, 1999, 151: 321-330
[22]Butcher P A, Williams E R, Whitaker D, Kiene K L, Temesgen B. Improving linkage analysis in outcrossed forest trees --- an example from Acacia mangium. Theor Appl Genet, 2001, 104: 1185-1191
[23]Gosselin I, Zhou Y, Bousquet J, Isabel N. Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet, 2002, 104: 987-997
[24]Stam P. Construction of integrated genetic linkage maps by means of a new computer package JoinMap. Plant J, 1993, 3: 739-744
[25]Bozhko M, Riegel R, Schubert R, Muller-Starck G. A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Mol Ecol, 2003, 12: 3147-55
[26]Schubert R, Starck G M, Riegel R. Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies L. Karst. Theor Appl Genet, 2001, 103: 1223-1231
[27]Brown G R, Kadel E E, Bassoni D L, Kiehne K L, Temesgen B, van Buijtenen J P, Sewell M M, Marshall K A, Neale D B. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics, 2001, 159: 799-809
[28]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[29]Varshney P K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Grane A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202
[30]Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 713-722
[31]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[32]Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P. Study of simple sequence repeat(SSR) markers from wheat expressed sequences tags (EST). Theor Appl Genet, 2004, 109: 800-805
[33]Areshchenkova T, Ganal M W. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet, 2002, 104: 229-235
[34]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[35]Ramsay L, Macaulay M, Ivanissivich S, MacLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, Maestri E, Marniorlin N, Sjakste T, Ganal M, Powell W, Powell W, Waugh R. A simple sequence repeat-based linkage map of barley. Genetics, 2000, 156: 1997-2005
[36]Kasha K J, Kao K N. High frequency haploid production in barley (Hordeum vulgare L.). Nature, 1970, 225: 874-876
[37]Bradshaw H D, Stettler R F. Molecular genetics of growth and development in Populus: II. Segregation distortion due to genetics load. Theor Appl Genet, 1994, 89: 551-558
[38]Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M. Segregation distortion of AFLP markers in Cryptomeria japonica. Genes Genet Syst, 1999, 74: 55-59
[39]Echt C S, Nelson C D. Linkage mapping and genome length in eastern white pine (Pinus strobes L.). Theor Appl Genet, 1997, 94: 1031-1037
[40]Myburg A A, Griffin A R, Sederoff R R, Whetten R W. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globules and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet, 2003, 107: 1028-1042
[41]Singh A K, Moss J P. Utilization of wild relatives in genetic improvement of Arachis hypogaea L: II. Chromosome complements of species of section Arachis. Theor Appl Genet, 1982, 61: 305-314
[42]Wynne J C, Halward T. Cytogenetics and genetics of Arachis. Crit Rev Plant Sci, 1989, 8: 189-220
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!