欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 388-394.doi: 10.3724/SP.J.1006.2009.00388

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用Mudgo/武育粳3号F2群体分析水稻抗灰飞虱QTL

段灿星1;程治军1;雷才林1;翟虎渠2;万建民1*   

  1. 1中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081;2中国农业科学院,北京100081
  • 收稿日期:2008-10-13 修回日期:2009-01-07 出版日期:2009-03-12 网络出版日期:2009-01-15
  • 通讯作者: 万建民
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004CB117204),国家科技攻关计划项目(2004BA525B02-04)资助

Analysis of QTLs for Resistance to Small Brown Planthopper(Laodelphax striatellus Fallen)in Rice(Oryza sativa L.) Using an F2 Population from a Cross between Mudgo and Wuyujing 3

DUAN Can-Xing1;CHENG Zhi-Jun1;LEI Cai-Lin1;ZHAI Hu-Qu2;WAN Jian-Min1*   

  1. Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Beijing 100081,China;Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2008-10-13 Revised:2009-01-07 Published:2009-03-12 Published online:2009-01-15
  • Contact: WAN Jian-Min

摘要:

灰飞虱是我国水稻生产上的重要害虫。Mudgo是一个高抗灰飞虱的籼稻品种,对灰飞虱具有强的排驱性和抗生性抗性。利用Mudgo/武育粳3F2群体,构建了含有177个单株的F2群体的遗传连锁图谱。该连锁图包含104SSR标记和3Indel标记,覆盖整个水稻基因组1 409.9 cM,每两个标记之间的平均距离为13.2 cM。采用改进的苗期集团筛选法对177F2:3家系进行了抗性鉴定,通过Windows QTL Cartographer 2.5进行复合区间作图分析,在第2312染色体上分别检测到抗灰飞虱QTL Qsbph2bQsbph3dQsbph12a,分别位于标记RM5791~RM29RM3199~RM5442I12-17~RM333 1之间,单个LOD值分别为3.253.116.82,贡献率分别为17.3%15.6%35.8%QTL增强抗性等位基因效应均来自Mudgo。其中Qsbph12a与标记RM3331I12-17紧密连锁。结合表型鉴定的结果,Qsbph12a应为抗灰飞虱主效QTL,与该位点紧密连锁的标记可用于抗灰飞虱快速选择辅助育种。

关键词: 水稻, 灰飞虱, 抗性, 数量性状基因座

Abstract:

The small brown planthopper (SBPH), Laodelphax striatellus Fallén (Homoptera: Delphacide), is an economically important pest in rice (Oryza sativa L.) and distributes widely in China. It not only causes direct damage by sucking plant sap but also transmits several viral diseases such as Rice stripe virus(RSV) and Rice black-streaked dwarf virus(RBSDV). which often cause major yield losses.. Host resistance has been recoqnized as one of the most economic and effective measures in controlling SBPH. Mudgo is one of indica rice cultivars with high resistance to SBPH, expressing strong antixenosis and antibiosis against SBPH. A genetic linkage map was constructed with an F2 population, derived from a cross between Mudgo and a japonics cultivar Wuyujing 3 for mapping QTLs associated with resistance to SBPH. The linkage map comprised 104 SSR and 3 Indel markers and covered 1 409.9 cM of rice genome with an average marker interval of 13.2 cM. One hundred and seventy-seven plants of F2:3 families were identified for resistance to SBPH by way of the modified seedbox screening test. QTL analysis of SBPH resistance was conducted using composite interval mapping implemented in Windows QTL Cartographer 2.5 software. A total of three QTLs, Qsbph2b, Qsbph3d, and Qsbph12a,conferring resistance to SBPH were detected on chromosomes 2, 3, and 12, locating in the regions of RM5791–RM29, RM3199–RM5442, and I12-17–RM3331, with LOD scores of 3.25, 3.11, and 6.82, respectively. The resistant alleles of Qsbph2b, Qsbph3d, and Qsbph12a, were all from Mudgo and could explain 17.3%, 15.6%, and 35.8% of total phenotypic variance, respectively. Qsbph12a linked tightly to the markers RM3331 and I12-17 has a potential value in breeding for SBPH resistance by rapid marker-assisted selection.

Key words: Rice, Resistance, Small brown planthopper, Quantitative trait locus(QTL)

[1]Pu M-H(浦茂华). Preliminary study on Laodelphax striatellus Fallen (Homoptera: Delphacide) in South of Jiangsu province. Acta Entomol Sin (昆虫学报), 1963, 12(2): 117–135(in Chinese with English abstract)
[2]Zhu S-X(朱绍先), Wu C-Z(邬楚中), Du J-Y(杜景佑). Rice Planthoppers and Their Control(稻飞虱及其防治). Shanghai: Shanghai Scientific and Technical Publishers, 1984. pp 116–139 (in Chinese)
[3]Duan C X, Wan J M, Zhai H Q, Chen Q, Wang J K, Su N, Lei C L. Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera: Delphacidae) in rice using recombinant inbred lines. J Econ Entomol, 2007, 100: 1450–1455
[4]Heinrichs E A, Medrano F G, Rapusas H R. Genetic Evaluation for Insect Resistance in Rice. LosBanos, Philippines: International Rice Research Institute, 1985. pp 71–142
[5]Ramirez B C, Haenni A L. Molecular biology of tenuiviruse, a remarkable group of plant viruses. J Gen Virol, 1994, 75: 467–475
[6]Xie L H. Research on rice virus diseases in China. Trop Agric Res Ser, 1986, 19: 45–50
[7]Sun D-Z(孙黛珍), Jiang L(江玲), Zhang Y-X(张迎信), Cheng X-N(程遐年), Wang C-M(王春明), Zhai H-Q (翟虎渠), Wan J-M(万建民). Resistance to rice stripe virus in eight rice varieties. Chin J Rice Sci(中国水稻科学), 2006, 20 (2): 219–222(in Chinese with English abstract)
[8]Sone S, Hattori Y, Tsuboi S, Otsu Y. Difference in susceptibility to imidacloprid of the populations of the small brown planthopper, Laodelphax striatellus Fallén. J Pestic Sci, 1995, 2 0: 541–543
[9]Endo S, Tsurumachi M. Insecticide resistance and insensitive acetylcholinesterase in small brown planthopper, Laodelphax striatellus. J Pestic Sci, 2000, 25: 395–397
[10]Endo S, Takahashi A, Tsurumachi M. Insecticide susceptibility of the small brown planthopper, Laodelphax striatellus Fallén (Homoptera: Delphacidae), collected from East Asia. Appl Entomol Zool, 2002, 37: 79–84
[11]Jeon Y H, Ahn S N, Choi H C, Hahn T R, Moon H P. Identification of a RAPD marker linked to a brown planthopper resistance gene in rice. Euphytica, 1999, 107: 23–28
[12]Wu A, Pang Y, Tang K. Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breed, 2002, 121: 93–95
[13]Qin W-S(秦文胜), Gao D-M(高东明), Chen S-X(陈声祥). Studies on techniques of rapid detecting rice stripe virus in Laodelphax striatellus. Zhejiang J Agric Sci(浙江农业学报), 1994, 6: 226–229(in Chinese with English abstract)
[14]Duan C-X(段灿星), Zhang S-X(张世贤), Chen-Q(陈青), Cheng Z-J(程治军), Zhai H-Q(翟虎渠), Wan J-M(万建民). Evaluation of rice germplasm for resistance to small brown planthopper and analysis of resistance mechanism. Chin J Rice Sci (中国水稻科学), 2007, 21 (4): 425–430(in Chinese with English abstract)
[15]International Rice Research Institute. Standard evaluation systems for rice. Manila, Philippines: International Rice Research Institute, 1988
[16]Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 97: 370–380
[17]Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915–919
[18]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 697–712
[19]McCouch S R, Teytelman L, Xu Y. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9:199–207
[20]Lincoln S, Daly M, lander E. Constructing Genetics Maps with MAPMARKER/EXP3.0. Whitehead Institute Technical Report, Cambridge, MA, 1992
[21]Kosambi D. The estimation of map distances from recombination values. Ann Eugen, 1994, 12: 172–175
[22]Basten C J, Weir B S, Zeng Z B. QTL Cartographer, Version 1.16. 2002. Department of Statistics, North Carolina State University, Raleigh, NC. http://www.statgen.ncsu.edu/qtlcart
[23]McCouch S R, Cho Y G, Yano M, Paule E, Blinstrue M, Morishima H M, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[24]Mackill, D J, Ni J J. Molecular mapping and marker-assisted selection for major-gene traits in rice. Rice Genet, Ⅳ, 2001, 137–151
[25]Athwal D S, Pathak M D, Bacalangco E H, Pura C D. Genetics of resistance to brown planthoppers and green leaf hoppers in Oryza sativa L. Crop Sci, 1971, 11: 747–750
[26]Tooyama T, Yamamoto T, Tsuji T. Chromosomal location of the brown.planthopper resistance gene Bph-1 revealed by RFLP mapping. Breed Sci, 1995, 45(suppl.2): 171(in Japanese)
[27]Chen J-M(陈建明), Yu X-P(俞晓平), Lü Z-X(吕仲贤), Zheng X-S(郑许松), Xu H-X(徐红星), Cheng J-A(程家安), Liu G-J(刘光杰). Tolerance of rice varieties to whitebacked planthopper Sogatella furcifera and variation of nutritional components of rice plants. Chin J Appl Ecol(应用生态学报), 2003, 14(12): 2246–2250(in Chinese with English abstract)
[28]Hirabayashi H, Ogawa T. RFLP mapping of Bph-1 (Brown planthopper resistance gene) in rice. Breed Sci, 1995, 45: 369–371
[29]Huang N, Parco, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu J, Subudi P, Angeles E R, Khush G S. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance gene in a doubled haploid rice population. Mol Breed, 1997, 3: 105–113
[30]Kim S M, Sohn J K. Identification of a rice gene (Bph1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers. Mol Cells, 2005, 20: 30–34
[31]Sharma N, Ketipearachchi Y, Murata K, Torii A, Takumi S, Mori N. RFLP/AFLP mapping of a brown planthopper (Nilaparvata lugens St?l) resistance gene Bph1 in rice. Euphytica, 2003, 129: 109–117
[32]Murata K, Fujiwara M, Nakamura C, Mori N, Kaneda C. Mapping of brown planthopper resistance genes bph2 and Bph9 in rice. J Crop Sci Breed, 1998, 43: 4–7
[33]Ishii T, Brar D S, Multani D S, Khush G S. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into culivated rice, O. sativa. Genome, 1994, 37: 217–221
[34]Jena K K, Jeung J U, Lee J H, Choi H C, Brar D S. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 288–297
[35]Su C-C(苏昌潮), Cheng X-N(程遐年), Zhai H-Q(翟虎渠), Wan J-M(万建民). Detection and analysis of QTLs for resistance to Brown Planthopper (Nilaparvata lugens St?l) in rice (Oryza sativa L.) using backcross inbred lines. Acta Genet Sin (遗传学报), 2002, 29(4): 332–339(in Chinese with English abstract)
[36]Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki A. A High-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 149: 479–494
[37]Soundararajan R P, Kadirvel P, Gunathilagaraj K, Maheswaran M. Mapping of quantitative trait loci associated with resistance to brown planthopper in rice by means of a doubled haploid population. Crop Sci, 2004, 44: 2214–2220
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!