欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1038-1043.doi: 10.3724/SP.J.1006.2009.01038

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用永久F2群体定位小麦株高的QTL

王岩,李卓坤,田纪春*   

  1. 山东农业大学/国家作物生物学重点实验室小麦品质育种室,山东泰安271018
  • 收稿日期:2008-11-27 修回日期:2009-02-17 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 田纪春,E-mail:jctian@sdau.edu.cn;Tel:0538-8242040
  • 基金资助:

    本研究由国家基础研究重大发展计划(973计划)项目(2009CB118301)和国家高技术研究发展计划(863计划)项目(2006AA1021E9)资助。

Detection of Quantitative Trait Loci for Plant Height Using an Immortalized F2 Population in Wheat

WANG Yan,LI Zhuo-Kun,TIAN Ji-Chun*   

  1. Group of Quality Wheat Breeding of Key Laboratory of Crop Biology/Shandong Agricultural University Tai'an 271018,China
  • Received:2008-11-27 Revised:2009-02-17 Published:2009-06-12 Published online:2009-04-16
  • Contact: TIAN Ji-Chun,E-mail:jctian@sdau.edu.cn;Tel:0538-8242040

摘要:

为研究小麦株高的遗传机制,利用DH群体构建了一套包含168个杂交组合的小麦永久F2群体, 并于2007年种植于山东泰安和山东聊城。构建了一套覆盖小麦21条染色体的遗传连锁图谱并利用该图谱的324个SSR标记对小麦株高进行QTL定位研究,使用基于混合线性模型的QTLNetwork 2.0软件进行QTL分析。在永久F2群体中定位了7个株高QTL,包括4个加性QTL,一个显性QTL,一对上位性QTL,共解释株高变异的20%,其中位于4D染色体的qPh4D,具有最大的遗传效应,贡献率为7.5%;位于2D 染色体显性效应位点qPh2D,可解释1.6%的表型变异;位于5B~6D染色体上位效应位点,可解释1.7%的表型变异。还发现加性效应、显性效应和上位效应对小麦株高的遗传起重要作用,并且基因与环境具有互作效应,结果表明利用永久F2群体进行QTL定位研究的方法有助于分子标记辅助育种。

关键词: 小麦, 永久F2群体, 株高, 数量性状位点

Abstract:

To study the genetic mechanism of wheat plant height, a set of doubled haploid (DH) lines were used to construct an immortalized F2 (IF2) population comprising 168 different crosses. The IF2 population was evaluated for plant height in 2007 cropping seasons in Tai’an and Liaocheng, Shandong province. Linkage map was constructed with 324 SSR markers covering the whole wheat genome, including 284 SSR, 37 ESTs loci, 1 ISSR loci and 2 HMW-GS loci, was constructed. This linkage map covered a total length of 2 485.7 cM with an average distance of 7.67 cM between adjacent markers. QTL analyses were performed using the software QTLNetwork version 2.0 based on the mixed linear model at P < 0.05. Four additive QTLs, 1 dominance QTL and pair of epistatic QTLs were detected, the total QTL effects detected for the plant height explained 20% of the phenotypic variation. One QTL qPh4D for plant height was identified on chromosome 4D, was identified on chromosome 2D, explaining 7.5% of the phenotypic variances. Dominance effect loci qPh2D was identified on chromosome 2D, explaining 1.6% of the phenotypic variances;Epistatic effects of loci was identified on chromosome 5B–6D, explaining 1.7% of the phenotypic variances . The results indicate additive effects, dominance effects and epistatic effects are important in genetics of wheat for plant height, which are also subjected to environmental modifications. These results further demonstrate that the use of IF2 groups QTL positioning research methods contribute to the molecular marker-assisted breeding.

Key words: Common wheat, IF2, Plant height, QTL


[1] Sears E R. The aneuploids of common wheat. Univ Missouri Res Bull, 1954, 572: 1-58

[2] Kuspira J, Unrau J. Genetic analyses of certain characters in common wheat using whole chromosome substitution lines. Can J Plant Sci, 1957, 37: 300-326

[3] Snape J W, Law C N, Worland A J. Whole chromosome analysis of height in wheat. Heredity, 1977, 38: 25-36

[4] McIntosh R A, Hart G E, Devos K M, Gale M D, Rogers W J. Catalogue of gene symbols for wheat, proceedings of the 9th international wheat genetics symposium. Saskatoon, Canada: University Extension Press, 1998. pp 77-78

[5] Huang X Q, Coster H, Ganal M W, Roder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106:1379-1389

[6] Liu D-C(刘冬成), Gao M-Q(高睦枪), Guan R-X(关荣霞), Li R-Z(李润枝), Cao S H(曹双河), Guo X L(郭小丽), Zhang A M(张爱民). Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2:3 population. Acta Genet Sin(遗传学报), 2002, 29: 706-711 (in English with Chinese abstract)

[7] Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a double haploid population. Theor Appl Genet, 1998, 96: 933-940

[8] Sourdille P, Cadalen T, Guyomarc H H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530-538

[9] Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat.JGenetGenomics, 2008, 35: 119-127

[10] Keller M, Karutz C H, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98: 1171-1182

[11] Borner A, Schumann E, Furste A, Coster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936

[12] Shah M M, Gill K S, Baenziger P S, Yen Y, Kaeppler S M, Ariyarathne H M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci, 1999, 39: 1728-1732

[13] Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet, 1999, 98: 977-984

[14] Kato K, Miura H, Sawada S. QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet, 1999, 98: 472-477

[15] Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895

[16] Tang J-H(汤继华), Yan J-B(严建兵), Ma X-Q(马西青), Teng W-T(滕文涛), Meng Y-J(孟义江), Dai J-R(戴景瑞), Li J-S(李建生). Genetic dissection for grain yield and its components using an immortalized F2 population in maize. Acta Agron Sin(作物学报), 2007, 33: 1299-1303(in Chinese with English abstract)

[17] Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 115: 849-858

[18] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genet, 277: 31-42

[19] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet,1999, 99: 1255-1264

[20] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274

[21] Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat variety Huapei 3 with high yield and early maturing. Henan Agric Sci (河南农业科学), 2007, (5): 36-37 (in Chinese)

[22] Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed Ind(中国种业), 2004, (4): 54 (in Chinese)

[23] Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574-2579

[24] Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0b. Cambridge: MA: Whitehead Institute Technical Report, 1992
Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153-160
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!