欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1115-1121.doi: 10.3724/SP.J.1006.2009.01115

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米水分利用效率、碳稳定同位素判别值和叶面积之间的关系

张丛志12,张佳宝1*,赵炳梓1,张辉12,黄平12,李晓鹏12,朱强根1   

  1. 1中国科学院南京土壤与农业可持续发展高家重点实验室封丘农业生态系统高家实验站,江苏南京210008;2中国科学院研究生院,北京100049
  • 收稿日期:2008-08-20 修回日期:2008-12-13 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 张佳宝,E-mail:jbzhang@issas.ac.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2005CB121103),中国科学院知识创新工程重要方向项目(KZCX2-YW-406),中国科学院知识创新工程重大项目(KSCX1-YW-09-05)资助。

Relationships among Water Use Efficiency,Carbon Isotope Discrimination,and Specific Leaf Area in Maize

ZHANG Cong-Zhi12,ZHANG Jia-Bao1,ZHAO Bing-Zi1,ZHANG Hui12,HUANG Ping12,LI Xiao-Peng12,ZHU Qiang-Gen1   

  1. 1State Experimental Station of Agro-Ecosystem in Fengqiu,State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;2Graduate School of the Chinese Academy of Sciences,Beijing 100049,China
  • Received:2008-08-20 Revised:2008-12-13 Published:2009-06-12 Published online:2009-04-16
  • Contact: ZHANG Jia-Bao,E-mail:jbzhang@issas.ac.cn

摘要:

通过盆栽试验,研究了水分胁迫对玉米各生育期叶面积(LA)、比叶面积(SLA)、水分利用效率(WUE)和碳稳定同位素判别值(Δ13C)的影响以及不同水分条件下WUE、茎叶Δ13CSLA之间的关系。试验设4个水分处理, 分别为田间持水量的75%~100%(W1)50%~75%(W2)30%~50%(W3)0~30%(W4)W2W3处理对生物量干重的影响在玉米拔节期明显,而W4处理导致各生育期生物量干重的极大降低。在W2W3处理下,玉米各生育期的WUE随着水分胁迫程度的增加而增加;W4处理下,WUE在孕穗期后则显著降低。SLA在孕穗期达到最大。玉米各生育期叶片Δ13CW1W2W3处理中呈随水分胁迫的增加而降低的趋势,而W4处理下的叶片Δ13C则高于W2W3处理。玉米叶片光合同化物质往茎秆转移时没有发生碳同位素的分馏作用。在玉米的各生育期,叶片Δ13C茎秆Δ13C和玉米WUE呈一致性的负相关;各生育期的SLAΔ13C正相关关系,而与WUE呈显著的负相关。

关键词: 水分胁迫, 玉米, 生育期, 水分利用效率, 碳同位素判别值, 比叶面积

Abstract:

Plant fractionates heavy carbon isotopes during photosynthesis, which usually occurs when CO2 diffuses to the carboxylation site, and during carboxylation reaction. On account of CO2 fixation process is coupled with water transpiration during the photosynthesis, it is possible to apply stable carbon isotope to study crop water use efficiency (WUE). At present, stable carbon isotope techniques have been widely studied and applied in C3 plants, however, the relative studies are less reported in C4 plants. In this way, a pot experiment was conducted from June 9 to September 25 in 2007 to study the variation of leaf area (LA), specific leaf area (SLA), water use efficiency (WUE), and carbon isotope discrimination (Δ13C) in maize (Zea mays L.) under different water deficit conditions. The objective was to understand the relationship among WUE, Δ13C and SLA. Maize were subjected to four water treatments, that is: 75–100% (W1), 50%–75% (W2), 30%–50% (W3), and 0–30% (W4) of field water-holding capacity of the soil. The WUE, SLA, and Δ13C values were measured at seedling, jointing, booting, tasseling, filling, and mature stages. The dry matter accumulation at jointing was obviously affected by W2 and W3 treatments, and decreased significantly in W4 treatment after booting. WUE increased with water stress during all growth stages in W2 and W3 treatments, but decreased significantly in W4 treatment after booting. SLA reached maximal value at booting. Leaf Δ13C decreased in W1, W2, and W3 treatments from jointing to mature, whereas leaf Δ13C value was greater in W4 treatment than in W2 and W3 treatments. Stem Δ13C significantly and positively correlated and presented no significant difference with leaf Δ13C, which indicated that carbon isotope was not fractionated during photosynthate transport from leaves to stems. Maize Δ13C was negatively correlated with WUE; SLA and Δ13C presented positive correlation and both negatively correlated with WUE.

Key words: Water stress, Maize,Growth stage, Water use efficiency, Carbon isotope discrimination, Specific leaf area

[1] Yepez E A, Williams D G, Scott R L, Lin G. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotope composition of water vapor. Agric For Meteorol, 2003, 119: 53-68
[2] Williams D G, Cable W, Hultine K, Hoedjes J C B, Yepez E A, Simonneaux V, Er-Raki S, Boulet G, de Bruin H A R, Chehbouni A, Hartogensis O K, Timouk F. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agrci For Meteorol, 2004, 125: 241-258
[3] Nier A O, Gulbransen E A. Variations in the relative abundance of the carbon isotopes. J Am Chem Soc, 1939, 61: 697-698
[4] O’leary M H. Carbon isotope fractionation in plants. Phytochemistry, 1981, 20:553-567
[5] Farquhar G D. On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol, 1983, 10: 205-226
[6] Wright G C, Hubick K T, Farquhar G D. Discrimination in carbon isotopes of leaves correlates with water use efficiency of field grown peanut cultivars. Aust J Plant Physiol, 1988, 15: 815-825
[7] Wright G C, Nageswara R C, Farquhar G D. Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci, 1994, 34: 92-97
[8] Hubick K T, Shorter R, Farquhar G D. Heritability and genotype × environment interactions of carbon isotope discrimination and transpiration efficiency in peanut (Arachis hypogaea L). Aust J Plant Physiol, 1988, 15: 799-813
[9] Ehleringer J R, Klassen S, Clayton C, Sherrili D, Fuller H M, Qing N F, Cooper T A. Carbon isotope discrimination and transpiration efficiency in common bean. Crop Sci, 1991, 31: 1161-1615
[10] Ehdaie B, Waines J G. Variation in water-use efficiency and its components in wheat: I. Well-watered pot experiment. Crop Sci, 1993, 33: 294-299
[11] Knight J D, Livingston N J, van Kessel C. Carbon isotope discrimination and water-use efficiency of six crops under wet and dryland conditions. Plant, Cell Environ, 1994, 17: 173-179
[12] Condon A G, Richards R A, Farquhar G D. Relationship between carbon isotope discrimination, water use efficiency and transpiration efficiency for dryland wheat. Aust J Agric Res, 1993, 44: 1693-1671
[13] Wall F L, Matus A, Lafond G P, van Kessel C. Water-use efficiency and carbon isotopic composition in reduced tillage system. Soil Sci Soc Am J, 1999, 63: 356-361

[14] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol, 1989, 40: 503-537
[15] Voltas J, Serrano L, Hernández M, Pemán J. Carbon isotope discrimination, gas exchange and stem growth of four Euramerican hybrid poplars under different watering regimes.New For, 2006, 31: 435-451
[16] Chaves M M, Pereira J S, Maroco J, Rodriques M L, Ricardo C P, Osório M L, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot, 2002, 89: 907-916
[17] Sun Z J, Livingston N J, Guy R D, Ethier G J. Stable carbon isotopes as indicators of increased water use efficiency and productivity in white spruce
[Picea glauca (Moench) Voss] seedlings. Plant Cell Environ, 1996, 19: 887-894
[18] Saranga Y, Flash I, Paterson A H, Yakir D. Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Sci, 1999, 142: 47-56
[19] Chen Y-H(陈英华), Hu J(胡俊), Li Y-H(李裕红), Xue B(薛博), Yan C-L(严重玲). Application of stable carbon isotope techniques to research into water stress. Acta Ecol Sin(生态学报), 2004, 24 (5): 1027-1033 (in Chinese with English abstract)
[20] Ebukanson G J. Retardation of chloroplast ATPase activity in maize seedlings by drought stress. J Plant Physiol, 1987, 129: 187-189
[21] Gimenez C, Mitchell V G, Lawlor D W. Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physio1, 1992, 98: 516-524
[22] Zhao B Z, Kondo M, Maeda M, Ozaki Y, Zhang J. Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes. Plant Soil, 2004, 261: 61-75
[23] FarquharG D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol, 1984, 11: 539-552
[24] Hubick K T, Farquhar G D. Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant, Cell Environ, 1989, 12: 795-804
[25] Hall A E, Richards R A, Condon A G, Wright G C, Farquhar G D. Carbon isotope discrimination and plant breeding. Plant Breed Rev, 1994, 12: 81-113
[26] Meinzer F C, Rundel P W, Goldstein G, Sharifi M R. Carbon isotope composition in relation to leaf gas exchange and environmental conditions in Hawaiian Metrosideros polymorpha populations. Oecologia, 1992, 91: 305-311
[27] Bagnall D J, King R W, FarquharG D. Temperature dependent feedback inhibition of photosynthesis in peanut. Planta, 1988, 175: 348-354
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!