欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1410-1417.doi: 10.3724/SP.J.1006.2009.01410

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米蔗糖转运蛋白基因ZmERD6 cDNAs 的克隆与逆境条件下的表达

马小龙1,2,刘颖慧2,3,**,袁祖丽1,*,石云素2,宋燕春2,王天宇2,黎裕2,*   

  1. 1河南农业大学生命科学学院,河南郑州450032;2中国农业科学院作物科学研究所,北京100081;3河北北方学院,河北张家口075000
  • 收稿日期:2009-02-16 修回日期:2009-04-22 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 黎裕,E-mail: yuli@mail.caas.net.cn;袁祖丽,E-mail: zuliyuan@yahoo.com.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z188)和国家自然科学基金项目(30571133)资助。

Cloning of cDNAs for a Noval Sugar Transporter Gene,ZmERD6,from Maize and Its Expression Analysis under Abiotic Stresses

MA Xiao-Long1,2, LIU Ying-Hui2,3,**, YUAN Zu-Li1,*, SHI Yun-Su2, SONG Yan-Chun2, WANG Tian-Yu2, and LI Yu2,*   

  1. 1 College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Hebei North University, Zhangjiakou 075000, China
  • Received:2009-02-16 Revised:2009-04-22 Published:2009-08-12 Published online:2009-06-10
  • Contact: LI Yu,E-mail: yuli@mail.caas.net.cn;YUAN Zu-Li,E-mail: zuliyuan@yahoo.com.cn

摘要:

在前期的研究中发现一个玉米苗期早期应答干旱的EST序列与拟南芥ERD6序列同源性较高。本研究应用电子克隆与同源克隆技术分离出这个基因,并命名为ZmERD6。研究表明ZmERD6具有大小两个转录本,分别被命名为ZmERD6-LZmERD6-SZmERD6-L开放阅读框1 515 bp,编码505个氨基酸,ZmERD6-S开放阅读框1 386 bp,编码463个氨基酸。序列分析表明,ZmERD6-LZmERD6-S蛋白结构中含有两个MFS (major facilitator super-family)结构域,属于MFS家族的蔗糖转运子(sugar transporter)亚族。跨膜结构预测表明两个蛋白都具有多个跨膜区,ZmERD6-L蛋白含12个而ZmERD6-S11个跨膜区。利用半定量RT-PCR分析ZmERD6ABA、干旱、盐和冷胁迫处理以及不同组织中的表达情况,表明ZmERD6基因在不同胁迫下能被诱导表达,在不同组织中表达有差异。通过在玉米基因组数据库中的查询和比对获得ZmERD6基因上游2.5 kb的序列,生物信息学预测表明该序列具有启动子的核心序列及上游增强子序列、抑制子序列,同时还具有冷、茉莉酸甲酯等激素调控序列。

关键词: ZmERD6, 蔗糖转运蛋白, 启动子, 基因表达, 玉米

Abstract:

Drought is one of the most important limiting factors for crop yield in the majority of agricultural regions around the world. Plants respond to drought stress at physiological, cellular and molecular levels. Carbohydrate substances as a nutrient and signal substances play an important role in plants throughout the life course. Carbohydrate has a variety of functions, such as providing energy for the cell life, a framework for proteins and nucleic acid molecules, and raw materials for new cells, regulating osmotically in plants to enhance tolerance, activating different signal transduction pathways and inhibition or activation of certain plant genes which regulate many physiological processes. Previous studies reported that ERD6 is a sugar transporter which widely exists in plants, belonging to Major Facilitator Super-family (MFS) which has a typical structure of MFS domain and sugar transport proteins signature. An EST with high similarity to ERD6 in Arabidopsis was found previously in maize. In the present study cDNAs for the gene homologous to ERD6, designated ZmERD6, was obtained through in silico and homology-based cloning techniques. ZmERD6 had two transcripts, i.e. ZmERD6-L (the large one) and ZmERD6-S (the small one). ZmERD6-L had an ORF of 1 515 bp and encoded 505 amino acids (AA) while ZmERD6-S had an ORF of 1 386 bp and encoded 463 AA. The deduced protein of ZmERD6-L and ZmERD6-S was predicted to contain 12 and 11 membrane spanning helices, respectively. Both of the two proteins had two MFS structural domain belonging to the sugar transporter sub-family of the MFS. Reverse transcription-PCR analysis was performed to investigate the expression pattern of the ZmERD6 in maize under various abiotic stresses. ZmERD6 was expressed at different stages through maize development and was also induced by different abiotic stresses. The promoter of ZmERD6 was cloned, which was about 2.5 kb upstream of ZmERD6 and was predicted to contain important regulatory elements including core promoter elements, enhancer elements, repressor elements and low-temperature and MeJA-responsive elements. These results suggest that the gene is a novel sugar transporter gene in maize and has important and diverse roles in tolerance to abiotic stresses.

Key words: ZmERD6, Sugar transporter, Promoter, Gene expression, Zea mays

[1] Taji T, Seki M, Yamaguchi-Shinozaki K, Kamada H, Giraudat J, Shinozaki K. Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol, 1999, 40: 119-123
[2] Kyiosue T, Shinozaki K. Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidapsis thaliana L. FEBS, 1993, 335: 189-192
[3] Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochem Biophys Acta /Biomembranes, 1998, 1370: 187-191
[4] Chiou T J, Bush D R. Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA, 1998, 95: 4784-4788
[5] Sinha A K, Hofmann M G. Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol, 2002, 128: 1480-1489
[6] Riesmeier J W, Willmitzer L, Frommer W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J, 1992, 11: 4705-4713
[7] Sauer N, Stolz J. SUC1 and SUC2: Two sucrose transporters from Arabidopsis thaliana. Expression and characterization in baker’s yeast and identification of the histidine-tagged protein. Plant J, 1994, 6: 67-77
[8] Kuhn C, Quick W P, Schulz A, Riesmeier J W, Sonnewald U, Frommer W B. Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Environ, 1996, 19: 1115-1123
[9] Gahrtz M, Stolz J, Sauer N A. phloem-specific sucrose-H1 symporter from Plantago major L. supports the model of apoplastic phloem loading. Plant J, 1994, 6: 697-706
[10] Hirose T, Imaizumi N, Scofield G N, Furbank R T, Ohsugi R. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol, 1997, 38: 1389-1396
[11] Scofield G N, Aoki N, Hirose T, Takano M, Jenkins C L D, Furbank R T. The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot, 2007, 58: 483-495
[12] Aoki N, Whitfeld P, Hoeren F, Scofield G, Newell K, Patrick J, Offler C, Clarke B, Rahman S, Furbank R T. Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Mol Biol, 2002, 50: 453-462
[13] Aoki N, Hirose T, Takahashi S, Ono K, Ishimaru K, Ohsugi R. Molecular cloning and expression analysis of a gene for a sucrose transporter in maize (Zea mays L.). Plant Cell Physiol, 1999, 40: 1072-1078
[14]Aoki N, Hirose T, Scofield G N, Whitfeld P R, Furbank R T. The sucrose transporter gene family in rice. Plant Cell Physiol, 2003, 44:223-232
[15] Braun D M, Slewinski T L. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and Tie-dyed loci in phloem loading. Plant Physiol, 2009, 149: 71-81
[16] Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164
[17] Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA, 2000, 97: 13979-13984
[18] Li H Y, Wang T Y, Shi Y S, Fu J J, Song Y C, Wang G Y, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). DNA Seq, 2007, 18: 445-460
[19] Sandra N, Oliver, Elizabeth S, Dennis, Rudy D. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol, 2007, 48: 1319-1330
[20] Singh K B. Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiol, 1998, 118: 1111-1120
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!