欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1418-1424.doi: 10.3724/SP.J.1006.2009.01418

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于元分析的大豆生育期QTL的整合

吴琼1,齐照明1,刘春燕1,2,胡国华2,*,陈庆山1,*   

  1. 1东北农业大学农学院,黑龙江哈尔滨150030;2黑龙江省农垦科研育种中心,黑龙江哈尔滨150090
  • 收稿日期:2008-12-25 修回日期:2009-03-20 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 陈庆山, E-mail: qshchen@126.com, Tel: 0451-55191945; 胡国华, E-mail:hugh757@vip.163.com; Tel: 0451-55199475
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100104-3),黑龙江省博士后科学研究基金(LHK-04014),黑龙江省高校青年学术骨干支撑计划项目(1152G007)资助。

An Integrated QTL Map of Growth Stage in Soybean[Glycine max(L.) Merr.]: Constructed through Meta-Analysis

WU Qiong1, QI Zhao-Ming1, LIU Chun-Yan1,2, HU Guo-Hua2,*, and CHEN Qing-Shan1,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 Crop Research and Breeding Center of Land-Reclamation, Harbin 150090, China
  • Received:2008-12-25 Revised:2009-03-20 Published:2009-08-12 Published online:2009-06-10
  • Contact: CHEN Qing-Shan, E-mail: qshchen@126.com, Tel: 0451-55191945;HU Guo-Hua, E-mail:hugh757@vip.163.com; Tel: 0451-55199475

摘要:

共搜集整理了12年来已经报道的与大豆生育期有关的98QTL,通过BioMercator2.1和公共标记映射整合到大豆公共遗传连锁图谱soymap2上,并利用元分析技术推断QTL位置,计算提取真正有效的QTL。发掘出大豆两个重要生育时期,共9真实QTL”及其连锁标记,其中与开花期(R1)相关的有7个,与成熟期(R8)相关的有2个,建立了QTL的一致性图谱,其中L连锁群上的一个定位区间包含一个已发表的有关R1的基因。在5个连锁群上共发现10个控制多个生育时期的QTL。本研究结果为大豆生育期QTL精细定位和基因克隆奠定了基础。

关键词: 大豆, 生育期, 元分析, 真实QTL, QTL的映射

Abstract:

Soybean is one of the most important crops in the world, which is kept improving for its yield and quality. Growth stage is a critical trait in soybean development and production which is one of the quantitive traits depending on many loci. As far as the technology of QTL comes, quantitive traits mapping has becoming hot point. Located the QTL controlling soybean growth stage by genetic linkage, is very useful to molecular breeding and deeper understand the process of growth stage develop. Till now, a lot of QTLs related with soybean growth stage were mapped, but many pseudo-positive QTLs were included. To mining the true and major QTLs, meta-analysis were introduced in this study. According to the map of soybean soymap2 published in 2004, an integrated QTL map of soybean growth stages was constructed. The QTLs of soybean growth stage were collected in recent 12 years, and projected to the reference map from their own maps by the software BioMercator2.1. In total, 98 QTLs related with different growth stage of soybean were integrated, including the QTLs of vegetative growth and reproductive growth. A method of meta-analysis was used to narrow down the confidence interval. Seven R1 real QTLs and two R8 real QTLs as well as their corresponding markers were obtained respectively, and a known gene was found in a mapping interval in LG L, located on 93.26 cM. The shortest confidence interval is only 0.9 cM in LG C2, with the marker A397_1 on the left and the marker Satt263 on the right. And 10 QTLs in 5 linkage groups, including C2, D1a, D1b, F, and J, were related to several growth stages. In the combined analysis, a QTL on 55.89 cM in LG D1a controls 6 growth stages, which were R1, R2, R3, R4, R5, and R7. Another QTL on LG D1b, near the markers Bng047_1 and Sat_169, were partly related not only in vegetative growth but also in reproductive growth. The results offer a basis for gene mining and molecular breeding in soybean.

Key words: Soybean, Growth stage, Meta-Analysis, Real QTL, QTL projection

[1] Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721-726

[2] Wu X-L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTLs mapping of some agronomic traits of soybean. Acta Genet Sin (遗传学报), 2001, 28(10): 947-955(in Chinese with English abstract)

[3] Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6: Soybean population. Euphytica, 2003, 129: 387-393

[4] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509

[5] Goffinet B, Gerber S. Quantitative trait loci: A meta-analysis. Genetics, 2000, 155: 463-473

[6] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169-2185

[7] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27: 125-132

[8] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[9] Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72

[10] Wang Z(王珍). Construction of soybean SSR based map and QTL analysis important agronomic traits. MS Dissertation of Guangxi University, 2004(in Chinese with English abstract)

[11] Wang Y(王英). Genetic analysis for growth period structure traits and QTL mapping of relative genes in soybean. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2008 (in Chinese with English abstract)

[12] Tasma M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25-35

[13] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651

[14] Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet, 2005, 111: 851-861

[15] Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458-467

[16] Mansur L M, Orf J H, Chase K, Jarvik T, Crean P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36:1327-1336

[17] Xin D W, Qiu H M, Shan D P, Shan C Y, Liu C Y, Hu G H, Staehelin C, Chen Q S. Analysis of quantitative trait loci underlying the period of reproductive growth stages in soybean
[Glycine max (L.) Merr.]. Euphytica, 2008, 162: 155-165

[18] Xin D-W(辛大伟), Shan D-P(单大鹏), Qiu H-M(邱红梅), Shan C-Y(单彩云), Liu C-Y(刘春燕), Hu G-H(胡国华), Chen Q-S(陈庆山). Analysis of quantitative trait loci underlying the period of vegetative growth stages in soybean
[Glycine max (L.) Merr.]. Mol Plant Breed (分子植物育种), 2007, 5(5): 639-647

[19] Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet, 1995, 11: 241-247

[20] Tasma I M, Shoemaker R C. Mapping flowering time gene homologs in soybean and their associationwith maturity (E) loci. Crop Sci,2003, 43: 319-328
Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs Associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL location. Crop Sci, 2006, 46:595-602
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!