欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1425-1431.doi: 10.3724/SP.J.1006.2009.01425

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦新品种济麦22抗白粉病基因的分子标记定位

殷贵鸿1,2,3,李根英4,何中虎2,5,刘建军4,王辉1,夏先春2,*   

  1. 1西北农林科技大学农学院,陕西杨凌712100;2中国农业科学院作物科学研究所/国家小麦改良中心/高家农作物基因资源与基因改良重大科学工程,北京100081;3周口市农业科学院,河南周口466001;4山东省农业科学院作物研究所,山东济南250100;5CIMMYT中国办事处,北京100081
  • 收稿日期:2009-03-13 修回日期:2009-04-24 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 夏先春,E-mail: xiaxianchun@caas.net.cn; Tel: 010-82108610
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z1A7,2006AA100102)和国家自然科学基金项目(30810214)资助。

Molecular Mapping of Powdery Mildew Resistance Gene in Wheat Cultivar Jimai 22

YIN Gui-Hong1,2,3, LI Gen-Ying4, HE Zhong-Hu2,5, LIU Jian-Jun4, WANG Hui1, and XIA Xian-Chun2,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Institute of Crop Sciences / National Wheat Improvement Center/ National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, China; 4 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 5 CIMMYT China Office, Beijing 100081, China
  • Received:2009-03-13 Revised:2009-04-24 Published:2009-08-12 Published online:2009-06-10
  • Contact: XIA Xian-Chun, E-mail: xiaxianchun@caas.net.cn; Tel: 010-82108610

摘要:

为明确济麦22携带抗白粉病基因的染色体位置,利用济麦22与感病亲本中国春杂交,用小麦白粉菌(Blumeria graminis f. sp. tritici)强毒性小种E20F2抗、感分离群体和F2:3家系进行抗病鉴定和遗传分析。结果表明,济麦22携带1个显性抗白粉病基因, 暂被命名为PmJM22运用SSREST标记及分离群体分组分析法(bulked segregant analysis, BSA)将其定位2BL染色体上,与4SSR5EST标记间的连锁距离为7.7 cM (Xwmc149)31.3 cM (Xbarc101)。通过分析2BL上其他抗白粉病基因的来源、染色体位置和抗性反应,认为PmJM22不同于Pm6Pm26Pm33MlZec1

关键词: 普通小麦, 白粉病, 抗病基因, 分子标记

Abstract:

Wheatpowdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important diseases of wheat (Triticum aestivum L.) worldwide. Breeding resistant wheat cultivars is the most economical and effective approach to control the disease. Jimai 22, a newly released wheat cultivar with high yield, broad adaptability, and good quality, is related to broad-sprectrum resistance to the isolates of B. graminis f. sp. tritici at both seedling and adult plant stages. To map the resistance gene of Jimai 22 on wheat chromosome, we used a highly virulent isolate E20 to screen the F2 plants and F2:3 lines derived from the cross of Jimai 22/Chinese Spring. Genetic analysis indicated that Jimai 22 carried a single dominant genefor resistance to powdery mildew, designated PmJM22 tentatively. Using bulked segregant analysis (BSA) with SSR and STS markers, PmJM22 was located to chromosome 2BL. Linkage analysis indicated that the resistance gene was linked to four SSR and five EST markers, with genetic distances from 7.7 (Xwmc149) to 31.3 cM (Xbarc101).Based on the origins, chromosome locations, and reaction patterns, PmJM22 is different from all the known powdery mildew resistance genes Pm6, Pm26, Pm33, and Mlzec1 on chromosome 2BL.

Key words: Common Wheat, Powdery mildew, Resistance gene, Molecular markers

[1]Liang S S, Suenaga K, He Z H, Wang Z L, Liu H Y, Wang D S, Singh R P, Sourdille P, Xia X C. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology, 2006, 96: 784-789

[2]National Agro-Tech Extension and Service Center (全国农业技术推广服务中心). Prediction of the outbreak of significant disease and pest for crops in national scale in 2004. China Plant Prot (中国植保导刊), 2004, (3): 21-22 (in Chinese)

[3]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Xia B(夏冰). Prediction of the outbreak of disease and pest for crops in national scale in 2005. China Plant Prot (中国植保导刊), 2005, (4): 28-30 (in Chinese)

[4]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰). Prediction of the outbreak of disease and pest for crops in national scale in 2006. China Plant Prot (中国植保导刊), 2006, (4): 5-8 (in Chinese)

[5]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰), Liu Y(刘宇), Zeng J(曾娟). Prediction of the outbreak of disease and pest for crops in national scale in 2007. China Plant Prot (中国植保导刊), 2007, (2): 32-35 (in Chinese)

[6]Zhang Y-J(张跃进), Wang J-Q(王建强), Jiang Y-Y(姜玉英), Feng X-D(冯晓东), Xia B(夏冰), Liu Y(刘宇), Zeng J(曾娟). Prediction of the outbreak of disease and pest for crops in national scale in 2008. China Plant Prot (中国植保导刊), 2008, (3): 38-40 (in Chinese)

[7]McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J,Morris C, Somers D J, Appels R,Devos KM. Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, eds. Proc 11th Intl Wheat Genet Symp. Sydney, Australia: Sydney University Press, 2008
[8] Hu T-Z(胡铁柱), Li H-J(李洪杰), Liu Z-J(刘子记), Xie C-J(谢超杰), Zhou Y-L(周益林), Duan X-Y(段霞瑜), Jia X(贾旭), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66. Acta Agron Sin (作物学报), 2008, 34(4): 545-550 (in Chinese with English abstract)
[9] Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica, 2004, 137: 203-223
[10]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 1497-1504
[11]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451-1456
[12]Antonio Blanco, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet,2008, 117: 135-142
[13]Perugini L D, Murphy J P, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2008, 116: 417-425
[14]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powderymildew in bread wheat line Saar. Theor Appl Genet,2008, 116: 1155-1166
[15]Hu T-Z(胡铁柱), Li H-J(李洪杰), Xie C-J(谢超杰), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular mapping and chromosomal location of the powdery mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron Sin (作物学报), 2008, 34(7): 1193-1198 (in Chinese with English abstract)
[16]Li H-S(李豪圣), Liu J-J(刘建军), Song J-M(宋建民), Liu A-F(刘爱峰), Cheng D-G(程敦公), Zhao Z-D(赵振东). Wheat cultivar Jimai 22 with high yield, stable productivity, good disease resistance and wide adaptability. J Triticeae Crops (麦类作物学报), 2007, 27(4): 744 (in Chinese)

[17]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457-463
[18]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018
[19]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[20]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
[21]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet, 2005, 110: 550-560
[22]Conley E J, Nduati V, Gonzalez-Hernandez J L, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo G R, Hummel D D, Anderson O D, Qi L L, Gill B S, Echalier B, Linkiewicz A M, Dubcovsky J, Akhunov E D, Dvo?ák J, Peng J H, Lapitan N L V, Pathan M S, Nguyen H T, Ma X F, Miftahudin, Gustafson J P, Greene R A, Sorrells M E, Hossain K G, Kalavacharla V, Kianian S F, Sidhu D, Dilbirligi M, Gill K S, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Anderson J A. A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics, 2004, 168: 625-637
[23]Sourdille P, Singh S, Cadalen T, Browm-Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12-25
[24]Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161-167
[25]Xiang Q-J(向齐君), Sheng B-Q(盛宝钦), Duan X-Y(段霞瑜), Zhou Y-L(周益林). The analysis of effective wheat powdery mildew resistance genes of some wheat breeding lines. Acta Agron Sin (作物学报), 1996, 22(6): 741-744 (in Chinese with English abstract)
[26]Wu X-P (武英鹏), Yuan Z-Y(原宗英), Li Y-F(李艳芳). Monitoring of the virulence of Erysiphe graminis f. sp. Tritici in different ecological areas of Shanxi Province. Chin J Eco-Agric (中国农业生态学报), 2005, 13(2): 62-64 (in Chinese with English abstract)
[27]Cao S-Q(曹世勤), Guo J-G(郭建国), Luo H-S(骆惠生), Jin M-A(金明安), Jia Q-Z(贾秋珍), Jin S-L(金社林). Selection of resistance sources to powdery mildew on wheat in Gansu and set-up of their gene banks. Plant Prot (植物保护), 2008, 34(1): 49-52(in Chinese with English abstract)
[28]Li Q(李强), Wang B-T(王保通), Wu X-Y(吴兴元), Duan S-K(段双科), Wang F(王芳). Analysis on resistant genes and new-breeding wheat cultivars (lines) for resistance to powdery mildew in Shaanxi Province. Acta Phytophylacica Sin (植物保护学报), 2008, 35(5): 438-442(in Chinese with English abstract)
[29]Yang Z-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin (作物学报), 1994, 20: 385-394 (in Chinese with English abstract)
[30]Zhang Z-H(张志华), Wang H-S(王洪森), Yan J(闫俊), Wu Z-X(武芝霞). Assessment and application of wheat resistant germplasm C39. Crop Germplasm Resour (作物品种资源), 1999, (4): 36-37 (in Chinese)
[31]Zheng D-S(郑殿升), Song C-H(宋春华), Liu S-C(刘三才), Chen M-Y(陈梦英), Wang X-M(王晓鸣), Dai F-C(戴法超), Liu X-M(刘旭明), Li Y-L (李怡琳). Germplasm enhancement of wheat on resistance to powdery mildew. Crop Germplasm Resour (作物品种资源), 1999, (4): 33-55 (in Chinese)
[32]Wu J-P(武计萍), Xu G-Y(许钢垣), Qiu S-Y(仇松英), Meng Z-P(孟兆平), Xue J-Z(薛金枝), Lu L-H(逯腊虎).Genetic resistance of wheat germplasm Linyuan 7069 and current application. J Triticeae Crops (麦类作物学报), 1997, 17(5): 16-18 (in Chinese) )
[33]Wang J-X(王剑雄), Zhang Q-H(张清海), Guo X-C(郭秀婵). Opinions for stripe rust and powdery mildew resistance and utilization value of wheat varieties from Britain. Acta Agric Univ Henanensis (河南农业大学学报), 1992, 26(2): 174-178 (in Chinese with English abstract)
[34]Yan G P, Chen X M, Line R F, Wellings C R. Resistance gene-analog polymorph-hism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet, 2003, 106: 636-643
[35]Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121-126
[36]Wang R(王瑞), Liu H-Y(刘红彦), Li H-L(李洪连), Wang J-M(王俊美), Yi Y-J(伊艳杰). Identification of PCR markers linked to wheat powdery mildew resistance gene Pm6. J Triticeae Crops (麦类作物学报), 2007, 27(3): 421-424 (in Chinese with English)
[37]Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to two powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585-590
[38]Smith P H, Hadfield J, Hart N J, Koebner R M, Boyd L A. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome, 2007,50: 259-265
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[5] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[8] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[9] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[10] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[11] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[12] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[13] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[14] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[15] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!