欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1318-1323.doi: 10.3724/SP.J.1006.2010.01318

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用海岛棉染色体片段导入系定位衣分和籽指QTL

朱亚娟,王鹏**,郭旺珍,张天真*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2009-11-02 修回日期:2010-04-20 出版日期:2010-08-12 网络出版日期:2010-05-20
  • 通讯作者: 张天真, E-mail: cotton@njau.edu.cn; Fax: 025-84395307
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2006CB101708),国家自然科学基金项目(30730067),江苏省自然科学基金(创新学者攀登项目,BK2008036)和高等学校创新引智计划(B08025)资助.

Mapping QTLs for Lint Percentage and Seed Index by Using Gossypium barbadense Chromosome Segment Introgression Lines

 ZHU Ya-Juan,WANG Peng**,GUO Wang-Zhen, ZHANG Tian-Zhen*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2009-11-02 Revised:2010-04-20 Published:2010-08-12 Published online:2010-05-20
  • Contact: ZHANG Tian-Zhen, E-mail: cotton@njau.edu.cn; Fax: 025-84395307

摘要: 以染色体片段导入系IL-15-5和IL-15-5-1构建的F2和F2:3分离群体,利用SSR标记对数量性状衣分和籽指QTL进行了定位。应用复合区间作图法分析两个组合的774个F2单株和F2:3家系衣分和籽指,检测到2个衣分的QTL,1个籽指的QTL。衣分QTL qLP-15-1在两世代中都被检测到,位于相同的分子标记置信区间JESPR152~NAU3040,置信的遗传距离分别为5.40 cM和3.20 cM;qLP-15-2只在F2:3中被检测到,位于分子标记NAU5302~NAU2901之间,置信的遗传距离为0.08 cM。籽指QTL qSI-15-1在F2和F2:3中都被检测到,分别位于分子标记NAU2814~NAU3040和JESPR152~NAU3040,置信的遗传距离分别为6.70 cM和5.70 cM。利用染色体片段导入系能准确地定位产量组分的QTL,为棉花产量的分子设计育种奠定基础。

关键词: 染色体片段导入系, 棉花, 衣分, 籽指, QTL

Abstract: Seed index (SI) and lint percentage (LP) are very important components, and many researchers have done abundant investigation on them by using different populations. Chromosome segment introgression lines (CSIL), different from the recurrent parent in introgressed segments, are the ideal materials for QTL research and the core of the breeding by design. The F2 and F2:3 populations were developed from CSILs-IL-15-5 and IL-15-5-1, and used in mapping QTLs for lint percentage and seed index with SSR markers. The SI and LP characteristics of the 774 F2 individuals and F2:3 families were analyzed by composite interval mapping (CIM), and one QTL was detected for SI and two QTLs for LP. qSI-15-1 was located between NAU2814 and NAU3040 with confident genetic distance of 6.70 cM in the F2 population and between NAU3040 and JESPR152 with confident genetic distance of 5.70 cM in the F2:3 population. qLP-15-1 detected in the F2 and F2:3 populations was located between NAU3040 and JESPR152 with confident genetic distance of 5.40 cM and 3.20 cM respectively; qLP-15-2 was mapped between NAU5302 and NAU2901 with confident genetic distance of 0.08 cM. In conclusion, the QTLs for yield components in cotton can be mapped using CSILs and provide a base for breeding by design.

Key words: Chromosome segment introgression lines, Cotton, Lint percentage, Seed index, QTL

[1]Jiang C X, Wright R J, El-Zik K M, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton)
[J].Proc Natl Acad Sci USA
[2]Wu M Q, Zhang X L, Nie Y C, He D H. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. Acta Genet Sin, 2003, 30: 443-452
[3]Zhang J F, Percy R. Improving upland cotton by introducing desirable genes from Pima Cotton. In: World Cotton Research Conf. 4, Lubbock, Texas, USA, Sept. 10-14, 2007. p 1901
[4]Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari
[J].Breed Sci
[5]Lin H X, Liang Z W, SasakI T, Yano M. Fine mapping and charac-
[6]terization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice.
[J]. Breed Sci
[7]Wu X-R(吴新儒), Liu S-B(刘树兵), Liu A-F(刘爱峰), Deng S-M(邓世民), Wang H-G(王洪刚), Zhou R-H(周荣华). Deve-
[8]lopment of near isogenic introgression lines (NIILs) of agronomic important traits in wheat. J Triticeae Crops (麦类作物学报), 2007, 27(4): 583-588 (in Chinese with English abstract)
[9]Wang L-Q(王立秋), Zhao Y-F(赵永锋), Xue Y-D(薛亚东), Zhang Z-X(张祖新), Zheng Y-L(郑用琏), Chen J-T(陈景堂). Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays. Acta Agron Sin (作物学报), 2007, 33(4): 663-668 (in Chinese with English abstract)
[10]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127
[11]Zhang J(张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of microsatellite markers in cotton with PAGEP silver staining. Acta Gossypii Sin (棉花学报), 2000, 12(5): 267-269 (in Chinese with English abstract)
[12]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum
[J]. BMC Genomics
[13]Van Ooijen J W, Voorrips R E. JoinMap Version 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen: CPRO- DLO, 2001
[14]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0 CP. Department of Statistics, North Carolina State University, Raleigh, NC, 2004
[15]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
[16]Lander E S, Kruglyak L. Genetic dissection of complex traits guidelines for interpreting and reporting linkage results
[J].Nat Genet
[17]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet, 2003, 106: 384-396
[18]Voorips R E.Mapchart Version 2.0: Windows Software for the Graphical Presentation of the Linkage Maps and QTL. Wageningen, the Netherlands: Plant Research International, 2001
[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Mori-
[20]shima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11-13
[21]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton
[J]. Euphytica
[22]Li C-Q(李成奇), Guo W-Z(郭旺珍), Ma X-L(马晓玲), Zhang T-
[23]Z(张天真). Tagging and mapping of QTL for yield and its components in upland cotton (Gossypium hirsutum L.) population with varied lint percentage. Cotton Sci (棉花学报), 2008, 20(3): 163-169 (in Chinese with English abstract)
[24]Ulloa M, Meredith Jr W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci, 2000, 4: 161-170
[25]Yin J-M(殷剑美), Wu Y-T(武耀廷), Zhang J(张军), Zhang T-Z(张天真), Guo W-Z(郭旺珍), Zhu X-F(朱协飞). Tagging and mapping of QTLs controlling lint yield and yield components in upland cotton (Gossypium hirsutum L.) using SSR and RAPD markers. Chin J Biotechnol (生物工程学报), 2002, 18(2): 162-166 (in Chinese with English abstract)
[26]Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors
[J].Theor Appl Genet
[27]Peleman J D, vander Voort J R. Breeding by design
[J].Trends Plant Sci
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[9] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[10] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[11] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[12] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[13] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[14] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[15] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!