欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1310-1317.doi: 10.3724/SP.J.1006.2010.01310

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

 利用4个姊妹近等基因群体定位水稻粒重和粒形QTL

姚国新1,2,李金杰1,张强1,3,胡广隆1,陈超1,汤波1,张洪亮1,李自超1,*   

  1. 1 中国农业大学农业部作物基因组与遗传改良重点实验室 / 北京市作物遗传改良重点实验室,北京 100193; 2 孝感学院生命科学技术学院,湖北孝感432100; 3吉林省农业科学院水稻研究所,吉林公主岭136100
  • 收稿日期:2010-01-08 修回日期:2010-04-20 出版日期:2010-08-12 网络出版日期:2010-05-20
  • 通讯作者: 李自超,E -mail: lizichao@cau.edu.cn; Tel: 010-62731414
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB129504),国家科技支撑计划项目(2009BADA2B01,2006BAD13B01)和国家高技术研究发展计划(863计划)项目(2006AA10Z158,2006AA100101)资助。

Mapping Grain Weight and Shape QTLs Using Four Sister Near Isogenic Lines (SNILs) of Rice (Oryza Sativa L.)

YAO Guo-Xin1,2, LI Jin-Jie1,ZHANG Qiang1,3,HU Guang-Long1,CHEN Chao1,TANG Bo1,ZHANG Hong-Liang1,LI Zi-Chao1,*   

  1. 1Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement,China Agricultural University,Beijing 100193,china;2School of Life Science and Technology,Xiaogan University,Xiaogan 432100,China;3Rice Research Institute,Jilin academy of Agricultural Sciences,Gongzhuling,136100,china
  • Received:2010-01-08 Revised:2010-04-20 Published:2010-08-12 Published online:2010-05-20
  • Contact: LI Zi-Chao,E -mail: lizichao@cau.edu.cn; Tel: 010-62731414

摘要: 粒重是决定水稻产量的三要素之一。利用世界上粒重最大的品种之一SLG-1(供体亲本)与小粒品种日本晴(Nipponbare,轮回亲本)杂交,在各回交世代选择粒重较大单株与日本晴回交,构建水稻粒重和粒形的姊妹近等基因系(SNILs)。对获得的73 株BC4F1单株进行粒重频率分布统计,选择粒重频率分布在4个峰值处的代表性单株,自交获得4个BC4F2 SNILs群体。利用BSA法(分离群体分组混合分析法),从均匀分布在水稻染色体上的1 513对SSR标记中筛选出与粒重和粒形相关的多态性标记19对,以LOD≥2.5作为选择阈值,对粒重、粒长、粒宽和粒厚进行QTL扫描,共检测到6个区域的12个QTL,贡献率从7.22%到53.38%。这些QTL所在区域包含已克隆的粒长GS3和粒宽GW2,也包含没有精细定位的第2染色体的RM6318-RM1367、第3染色体的RM5477–RM6417和第6染色体的RM3370–RM1161等3个区域控制粒重和粒形的5个QTL。其中第3染色体上RM5477–RM6417区间存在粒形贡献率较大的新的QTL。构建含有这些粒重QTL的姊妹近等基因系,为进一步精细定位或克隆新的粒重或粒形QTL奠定了基础。

关键词: 水稻, 姊妹近等基因系, 粒重, 粒形, QTL

Abstract: Grain weight (GW) is one of three major determinants of rice yield. In order to develop sister near isogenic lines (SNILs) for mapping GW and grain shape QTLs, we developed a cross with SLG-1 (as donor), one of the largest GW varieties in the world, and small GW variety Nipponbare(as recurrent), and selected larger GW plants to backcross with Nipponbare in different generations. Through analysis with total 73 BC4F1plants, we found four peaks in the frequency distribution of GW, and then selected four plants with the GW of each top peaks respectively to develop four SNIL populations. Using bulked segregant analysis(BSA), from 1 513 SSR makers evenly distributed on rice genome, we screened out 19 polymorphic SSR makers related to GW and grain shape. Using the LOD score 2.5 as the threshold, 12 QTLs for GW, grain length (GL), seed width (SW), and grain thickness (GT) were identified, which located on six regions of rice chromosome with explained phenotypic variation ranging from 7.22% to 53.38%. These QTL regions contained the cloned genes GS3 and GW2. Five GW and grain shape QTLs which were not be fine-mapped in previous research were also detected in the regions of RM6318–RM1367 on chromosome 2, RM5477–RM6417 on chromosome 3 and RM3370–RM1161 on chromosome 6. Among them, qGL3-1 with higher contribution was a new QTL for GL. The results provide a foundation for fine mapping and cloning new QTLs for GW and grain shape.

Key words:  Rice(Oriza sativa L.), Sister near-isogenic lines, Grain weight, Grain shape, QTL Rice(Oriza sativa L.), Grain weight, Grain shape, SNIL, QTL

[1]Khush G S. Productivity improvements in rice
[J].Nutr Rev
[2]Khush G S. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc, 2001, 60: 15-26
[3]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein
[J].Theor Appl Genet
[4]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. Rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase
[J].Nat Genet
[5]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication
[J].Nat Genet
[6]Xie X B, Song M H, Jin S N, Ahn S N, Suh J P, Hwang H G, McCouch S R. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon
[J]. Theor Appl Genet
[7]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622
[8]Ma L-L(马丽莲), Guo L-B(郭龙彪), Qian Q(钱前). Germplasm resources and genetic analysis of large grain in rice. Chin Bull Bot (植物学通报), 2006, 23(4): 395-401 (in Chinese with English abstract)
[9]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA
[J]. Nucl Acids Res
[10]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1998, 76: 815-829
[11]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L
[J].). Theor Appl Genet
[12]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L
[J].). DNA Res
[13]Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L
[J].). Theor Appl Genet
[14]Zhang Q F, Shen B Z, Dai X K, Mei M H, Maroof M S A, Li B Z. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice
[J]. Proc Natl Acad Sci USA
[15]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607
[16]Lander E S, Green P. Mapmaker: an Interactive computer package for constructing primary genetic linkage maps of experimental and natural populations
[J]. Genomics
[17]Gao Y M, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects
[J].Theor Appl Genet
[18]McCouch S R, Cho Y G, Yato M, Paul E, Blinstrub M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[19]Liu R-H(刘仁虎), Meng J-L(孟金陵). Mapdraw, a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)
[20]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503-15507
[21]Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E V D, Cong B, Liu J P, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2, A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
[22]Dorweiler L, Stec A, Kermicle J, Doebley J. Teosinte glume architecture 1, a genetic locus controlling a key step in maize evolution. Science, 1993, 262: 233-235
[23]Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature, 1999, 398: 236-239
[24]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize
[J].Nat Genet
[25]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1
[J].Proc Natl Acad Sci USA
[26]Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J F, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644
[27]Yano M, Katayose Y, Ashikari M, Yamanouchi U,Monnac L, Fuseb T, Babac T, Yamamotoc K, Umeharaa Y, Nagamuraa Y, Sasakia T.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483
[28]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2
[J].Proc Natl Acad Sci USA
[29]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.
[30]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745
[31]Ren Z H, Gao J P, Li L G, Cai X L, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter
[J].Nat Genet
[32]Chen J J, Ding J H, Ouyang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang J L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice
[J].Proc Natl Acad Sci USA
[33]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice
[J].Nat Genet
[34]Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X Q, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication
[J].Nat Genet
[35]Jin J, Wei H, Gao J P, Yang J, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication
[J].Nat Genet
[36]Zhang D-L(张冬玲). Genetic Evolution and on Strategy of Core Collection of Chinese Cultivated Rice (Oryza sativa L.). PhD Dissertation of China Agricultural University, 2007 (in Chinese with English abstract)
[37]Plant Cell Physiol, 2002, 43: 1096-1105
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!