作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1310-1317.doi: 10.3724/SP.J.1006.2010.01310
姚国新1,2,李金杰1,张强1,3,胡广隆1,陈超1,汤波1,张洪亮1,李自超1,*
YAO Guo-Xin1,2, LI Jin-Jie1,ZHANG Qiang1,3,HU Guang-Long1,CHEN Chao1,TANG Bo1,ZHANG Hong-Liang1,LI Zi-Chao1,*
摘要: 粒重是决定水稻产量的三要素之一。利用世界上粒重最大的品种之一SLG-1(供体亲本)与小粒品种日本晴(Nipponbare,轮回亲本)杂交,在各回交世代选择粒重较大单株与日本晴回交,构建水稻粒重和粒形的姊妹近等基因系(SNILs)。对获得的73 株BC4F1单株进行粒重频率分布统计,选择粒重频率分布在4个峰值处的代表性单株,自交获得4个BC4F2 SNILs群体。利用BSA法(分离群体分组混合分析法),从均匀分布在水稻染色体上的1 513对SSR标记中筛选出与粒重和粒形相关的多态性标记19对,以LOD≥2.5作为选择阈值,对粒重、粒长、粒宽和粒厚进行QTL扫描,共检测到6个区域的12个QTL,贡献率从7.22%到53.38%。这些QTL所在区域包含已克隆的粒长GS3和粒宽GW2,也包含没有精细定位的第2染色体的RM6318-RM1367、第3染色体的RM5477–RM6417和第6染色体的RM3370–RM1161等3个区域控制粒重和粒形的5个QTL。其中第3染色体上RM5477–RM6417区间存在粒形贡献率较大的新的QTL。构建含有这些粒重QTL的姊妹近等基因系,为进一步精细定位或克隆新的粒重或粒形QTL奠定了基础。
[1]Khush G S. Productivity improvements in rice [J].Nutr Rev [2]Khush G S. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc, 2001, 60: 15-26 [3]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J].Theor Appl Genet [4]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. Rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J].Nat Genet [5]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication [J].Nat Genet [6]Xie X B, Song M H, Jin S N, Ahn S N, Suh J P, Hwang H G, McCouch S R. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon [J]. Theor Appl Genet [7]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622 [8]Ma L-L(马丽莲), Guo L-B(郭龙彪), Qian Q(钱前). Germplasm resources and genetic analysis of large grain in rice. Chin Bull Bot (植物学通报), 2006, 23(4): 395-401 (in Chinese with English abstract) [9]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucl Acids Res [10]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1998, 76: 815-829 [11]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L [J].). Theor Appl Genet [12]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L [J].). DNA Res [13]Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L [J].). Theor Appl Genet [14]Zhang Q F, Shen B Z, Dai X K, Mei M H, Maroof M S A, Li B Z. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice [J]. Proc Natl Acad Sci USA [15]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607 [16]Lander E S, Green P. Mapmaker: an Interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics [17]Gao Y M, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects [J].Theor Appl Genet [18]McCouch S R, Cho Y G, Yato M, Paul E, Blinstrub M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [19]Liu R-H(刘仁虎), Meng J-L(孟金陵). Mapdraw, a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract) [20]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503-15507 [21]Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E V D, Cong B, Liu J P, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2, A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88 [22]Dorweiler L, Stec A, Kermicle J, Doebley J. Teosinte glume architecture 1, a genetic locus controlling a key step in maize evolution. Science, 1993, 262: 233-235 [23]Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature, 1999, 398: 236-239 [24]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize [J].Nat Genet [25]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1 [J].Proc Natl Acad Sci USA [26]Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J F, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644 [27]Yano M, Katayose Y, Ashikari M, Yamanouchi U,Monnac L, Fuseb T, Babac T, Yamamotoc K, Umeharaa Y, Nagamuraa Y, Sasakia T.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483 [28]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2 [J].Proc Natl Acad Sci USA [29]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. [30]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745 [31]Ren Z H, Gao J P, Li L G, Cai X L, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter [J].Nat Genet [32]Chen J J, Ding J H, Ouyang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang J L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice [J].Proc Natl Acad Sci USA [33]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice [J].Nat Genet [34]Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X Q, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication [J].Nat Genet [35]Jin J, Wei H, Gao J P, Yang J, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication [J].Nat Genet [36]Zhang D-L(张冬玲). Genetic Evolution and on Strategy of Core Collection of Chinese Cultivated Rice (Oryza sativa L.). PhD Dissertation of China Agricultural University, 2007 (in Chinese with English abstract) [37]Plant Cell Physiol, 2002, 43: 1096-1105 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|