作物学报 ›› 2010, Vol. 36 ›› Issue (1): 109-114.doi: 10.3724/SP.J.1006.2010.00109
张宏,任志龙,胡银岗,王长有,吉万全*
ZHANG Hong,REN Zhi-Long,HU Yin-Gang,WANG Chang-You,JI Wan-Quan*
摘要:
利用常规遗传和单缺体遗传分析方法,研究了小麦抗条锈病新种质陕麦139中抗病基因的遗传方式。结果表明,陕麦139×辉县红和陕麦139×阿勃两组合F1植株对条中32表现近免疫。F2群体对条中32抗性调查表明, 陕麦139×阿勃组合和陕麦139×辉县红组合的抗感比例分别为203∶16和210∶13,经卡方检验, 抗感分离比符合15∶1 (χ2值分别为0.26和0.02, χ20.05,1 = 3.84), 说明陕麦139所含抗性基因对条中32的抗性受2对独立遗传显性位点控制。21个单缺体组合的F2群体苗期室内接种条中32的抗性分离调查结果表明,阿勃1BN´陕麦139组合抗感分离比例为75∶0 (χ2=4.65,χ20.05,1 = 3.84),阿勃2DN´陕麦139组合抗感分离比例为132∶2 (χ2=4.40,χ20.05,1 = 3.84),远远偏离15∶1,其余19个组合的抗感分离比例经卡方测验均符合15∶1。表明该抗条锈病基因位于1B和2D染色体,暂被分别命名为YrSM139-1B和YrSM139-2D。利用284对SSR引物检测F2群体的抗感池和单株,发现YrSM139-1B与SSR标记Xgwm273紧密连锁,即该标记可作为YrSM139-1B抗条锈病基因的标记。利用Xgwm273对陕麦139的亲本分析表明, YrSM139-1B抗条锈病基因来自野生二粒小麦AS846。
[1] Li Z-Q(李振岐), Zeng S-M(曾士迈). Stripe Rust in China(中国小麦锈病). Beijing: China Agriculture Press, 2002. pp 41-50, 164-173 (in Chinese)[2] Yang Z-M(杨作民), Xie C-J(解超杰), Sun Q-X(孙其信). Situation of the sources of stripe rust resistance of wheat in the post-CY32 era in China. Acta Agron Sin (作物学报), 2003, 29(2):161-168 (in Chinese with English abstract)[3] McIntosh R A, Hart G E, Devos K M, Gale M D, Rogers W J. Catalogue of gene symbols for wheat. In: Slinkard A E ed. Proc. 9th Int. Wheat Genet. Symp., Vol. 5. University of Saskatchewan: University Extension Press, 1998. pp 1-236[4] Zhang H(张宏). Genetic Analysis of Stripe Rust Resistance Gene and Expression, Isolation and Characterization of Genes in Wheat Infected by Puccinia striiformis. PhD Dissertation of Northwest A&F University, 2009. pp 14-17 (in Chinese with English abstract) [5] Bariana H S, Parry N, Barclay I R,Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J, Francki M. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet, 2006, 112: 1143-1148[6]Uauy C, Brevis J C, Chen X M, Khan I A, Jackson LF, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet, 2005, 112: 97-105[7] Chicaiza O, Khan I A, Zhang X, Brevis C J, Jackson L, Chen X M, Dubcovsky J. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Sci, 2006, 46: 485-487[8] Luo P G, Hu X Y, Ren Z L, Zhang H Y, Shu K, Yang Z J. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome, 2008, 51: 922-927[9] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023[10] Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 688-697[11] Somers D J, Isaac P, Efwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet, 2004, 109: 1105-1114[12] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314-337[13] Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific and all-stage resistance and non-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet, 2007, 114: 1277-1287[14] Yin X-G(殷学贵), Shang X-W(尚勋武), Pang B-S(庞斌双), Song J-R(宋建荣), Cao S-Q(曹世勤), Li J-C(李金昌), Zhang X-Y(张学勇). Molecular mapping two novel stripe rust resistance gene YrTp1 and YrTp2 in A-3 derived from Triticum aestivum × Thinopyrum ponticum. Sci Agric Sin (中国农业科学), 2006, 39(1): 10-17 (in Chinese with English abstract)[15] Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu T T, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440[16] Jing C-Q(井长勤), Chen R-Z(陈荣振), Feng G-H(冯国华), Liu D-T(刘东涛), Zhang H-Y(张会云). Analyses of resistance genes to stripe rust in 52 important wheat cultivars. Jiangsu J Agric Sci (江苏农业学报), 2005, 21(1): 30-34 (in Chinese with English abstract)[17] Wan A-M(万安民), Zhao Z-H(赵中华), Wu L-R(吴立人). Reviews of occurrence of wheat stripe rust disease in 2002 in China. Plant Protect (植物保护), 2003, 29(2): 5-8 (in Chinese with English abstract)[18] Peng J H, Fahima T, Röder M S, Li Y C, Dahan A, Grama A, Ronin Y I, Korol A B, Nevo E. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B.Theor Appl Genet, 1999, 98: 862-872[19] Dong S-J(董淑静), Xu W-G(许为钢). Progress on stripe rust resistance genes and resistant breeding in wheat. Chin Agric Sci Bull (中国农学通报), 2009,25(13): 190-196 (in Chinese with English abstract)[20] Ren Z-L(任志龙), Zhang H(张宏), Wang K-F(王康峰), Wang Y-J(王亚娟), Cai D-M(蔡东明), Ji W-Q(吉万全), Song Y-L(宋玉莲). Development of wheat germplasm with disease resistance :Yuanfeng 139. Chin Agric Sci Bull (中国农学通报), 2006, 22(7): 228-231 (in Chinese with English abstract)[21] Wang J-X(王剑雄). Identification of disease resistance in germplasm resources of food crops. Beijing: Agriculture Press, 1991. pp 10-18 (in Chinese with English abstract)[22] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018[23] Kema G H J, Lange W. Resistance in spelt wheat to yellow rust: II. Monosomic analysis of the Iranian accession 415. Euphytica, 1992, 63: 219-224[24] William M, Singh R P, Huerta-Espino J, Ortiz Islas S, Hoisington D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003, 93: 153-159 [25] Pu Z-J(蒲宗君), Yan Z-H(颜泽洪), Wei Y-M(魏育明), Yang W-Y(杨武云), Zheng Y-L(郑有良), Zhang Z-Y(张增艳). Identification and SSR mapping of a stripe rust resistance gene in wheat line PI31. Acta Phytopathol Sin (植物病理学报), 2006, 36(4): 342-346 (in Chinese with English abstract)[26] Ma J X, Zhou R H, Dong Y C, Lan F, Wang X M, Jia J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001, 120: 219-226[27] Peng J H, Fahima T, Huang Q Y, Dahan A, Li Y C, Grama A, Nevo E. High-density molecular map of chromosome region harbouring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat. Genetica, 2000, 109: 199-210 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[4] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[5] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[6] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[7] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[8] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[9] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[10] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[13] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
|